Gov 50: 25. Inference for Linear Regression

Matthew Blackwell
Harvard University

1. Inference for linear regression
2. Presenting OLS regressions
3. Wrapping up the class

1/ Inference for linear
regression

- Do political institutions promote economic development?
- Do political institutions promote economic development?
- Famous paper on this: Acemoglu, Johnson, and Robinson (2001)
- Do political institutions promote economic development?
- Famous paper on this: Acemoglu, Johnson, and Robinson (2001)
- Relationship between strength of property rights in a country and GDP.
- Do political institutions promote economic development?
- Famous paper on this: Acemoglu, Johnson, and Robinson (2001)
- Relationship between strength of property rights in a country and GDP.
- Data:

Data

- Do political institutions promote economic development?
- Famous paper on this: Acemoglu, Johnson, and Robinson (2001)
- Relationship between strength of property rights in a country and GDP.
- Data:

Name	Description
shortnam	three-letter country code
africa	indicator for if the country is in Africa
asia	indicator for if country is in Asia avexpr
strength of property rights (protection against ex- propriation)	

Loading the data

library(gov50data)
 head(ajr)

\#\# \# A tibble: 6×15
\#\# short~1 africa lat_a~2 malfa~3 avexpr logpg~4 logem4 asia \#\# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
\#\# 1 AFG $0 \quad 0.367$ 0.00372 NA NA 4.541
$\begin{array}{llllllll}\text { \#\# } 2 \text { AGO } & 1 & 0.137 & 0.950 & 5.36 & 7.77 & 5.63 & 0\end{array}$
\#\# 3 ARE $0 \quad 0.267 \quad 0.0123 \quad 7.18 \quad 9.80$ NA 1
$\begin{array}{llllllll}\text { \#\# } 4 \text { ARG } & 0 & 0.378 & 0 & 6.39 & 9.13 & 4.23 & 0\end{array}$
\#\# 5 ARM $0 \quad 0.44400$ NA 0.68 NA 1
\#\# 6 AUS $0 \quad 0.300$ 0 $0.32 \quad 9.90 \quad 2.15 \quad 0$
\#\# \# ... with 7 more variables: yellow <dbl>, baseco <dbl>,
\#\# \# leb95 <dbl>, imr95 <dbl>, meantemp <dbl>,
\#\# \# lt100km <dbl>, latabs <dbl>, and abbreviated variable
\#\# \# names 1: shortnam, 2: lat_abst, 3: malfal94,
\#\# \# 4: logpgp95

AJR scatterplot

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Data:

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Data:
- Dependent variable: Y_{i}

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Data:
- Dependent variable: Y_{i}
- Independent variable: X_{i}

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Data:
- Dependent variable: Y_{i}
- Independent variable: X_{i}
- Population parameters:

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Data:
- Dependent variable: Y_{i}
- Independent variable: X_{i}
- Population parameters:
- Population intercept: β_{0}

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Data:
- Dependent variable: Y_{i}
- Independent variable: X_{i}
- Population parameters:
- Population intercept: β_{0}
- Population slope: β_{1}

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Data:
- Dependent variable: Y_{i}
- Independent variable: X_{i}
- Population parameters:
- Population intercept: β_{0}
- Population slope: β_{1}
- Error/disturbance: ϵ_{i}

Simple linear regression model

- We are going to assume a linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Data:
- Dependent variable: Y_{i}
- Independent variable: X_{i}
- Population parameters:
- Population intercept: β_{0}
- Population slope: β_{1}
- Error/disturbance: ϵ_{i}
- Represents all unobserved error factors influencing Y_{i} other than X_{i}.

Least squares

- How do we figure out the best line to draw?

Least squares

- How do we figure out the best line to draw?
- Alt question: how do we figure out β_{0} and β_{1} ?

Least squares

- How do we figure out the best line to draw?
- Alt question: how do we figure out β_{0} and β_{1} ?
- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$: estimated coefficients.

Least squares

- How do we figure out the best line to draw?
- Alt question: how do we figure out β_{0} and β_{1} ?
- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$: estimated coefficients.
- $\widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$: predicted/fitted value.

Least squares

- How do we figure out the best line to draw?
- Alt question: how do we figure out β_{0} and β_{1} ?
- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$: estimated coefficients.
- $\widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$: predicted/fitted value.
- $\hat{\epsilon}_{i}=Y_{i}-\widehat{Y}$: residual.

Least squares

- How do we figure out the best line to draw?
- Alt question: how do we figure out β_{0} and β_{1} ?
- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$: estimated coefficients.
- $\widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$: predicted/fitted value.
- $\hat{\epsilon}_{i}=Y_{i}-\widehat{Y}$: residual.
- Get these estimates by the least squares method.

Least squares

- How do we figure out the best line to draw?
- Alt question: how do we figure out β_{0} and β_{1} ?
- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$: estimated coefficients.
- $\widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$: predicted/fitted value.
- $\hat{\epsilon}_{i}=Y_{i}-\widehat{Y}$: residual.
- Get these estimates by the least squares method.
- Minimize the sum of the squared residuals (SSR):

$$
\mathrm{SSR}=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}
$$

- Least squares is an estimator

Estimators

- Least squares is an estimator
- it's a machine that we plug data into and we get out estimates.

Estimators

- Least squares is an estimator
- it's a machine that we plug data into and we get out estimates.

Estimators

- Least squares is an estimator
- it's a machine that we plug data into and we get out estimates.

Estimators

- Least squares is an estimator
- it's a machine that we plug data into and we get out estimates.

Estimators

- Least squares is an estimator
- it's a machine that we plug data into and we get out estimates.

Estimators

- Least squares is an estimator
- it's a machine that we plug data into and we get out estimates.

- Just like the sample mean or difference in sample means

Estimators

- Least squares is an estimator
- it's a machine that we plug data into and we get out estimates.

- Just like the sample mean or difference in sample means
- \rightsquigarrow sampling distribution with a standard error, etc.

Simulation procedure

- Let's take a simulation approach to demonstrate:

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

1. Randomly sample $n=30$ countries $w /$ replacement using sample()

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

1. Randomly sample $n=30$ countries $w /$ replacement using sample()
2. Use lm() to calculate the OLS estimates of the slope and intercept

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

1. Randomly sample $n=30$ countries $w /$ replacement using sample()
2. Use $\operatorname{lm}()$ to calculate the OLS estimates of the slope and intercept
3. Plot the estimated regression line

Population regression

Randomly sample from AJR

Sampling distribution of OLS

- Estimated slope and intercept vary between samples, centered on truth.

Sampling distribution of slopes

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are random variables
- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are random variables
- Are they on average equal to the true values (bias)?
- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are random variables
- Are they on average equal to the true values (bias)?
- How spread out are they around their center (variance)?
- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are random variables
- Are they on average equal to the true values (bias)?
- How spread out are they around their center (variance)?
- Under minimal conditions, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are unbiased for the population line of best fit, but...
- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are random variables
- Are they on average equal to the true values (bias)?
- How spread out are they around their center (variance)?
- Under minimal conditions, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are unbiased for the population line of best fit, but...
- This might be misleading if the true relationship is nonlinear.
- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are random variables
- Are they on average equal to the true values (bias)?
- How spread out are they around their center (variance)?
- Under minimal conditions, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are unbiased for the population line of best fit, but...
- This might be misleading if the true relationship is nonlinear.
- May not represent a causal effect unless causal assumptions hold.

Standard errors of OLS

R will also calculate an estimate of the standard error: $\widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)$

Standard errors of OLS

R will also calculate an estimate of the standard error: $\widehat{\operatorname{SE}}\left(\widehat{\beta}_{1}\right)$
Default estimators for the SEs assume homoskedasticity or that the spread around the regression line is the same for all values of the independent variables.

Standard errors of 0LS

R will also calculate an estimate of the standard error: $\widehat{\operatorname{SE}}\left(\widehat{\beta}_{1}\right)$
Default estimators for the SEs assume homoskedasticity or that the spread around the regression line is the same for all values of the independent variables.

Standard errors of OLS

R will also calculate an estimate of the standard error: $\widehat{\operatorname{SE}}\left(\widehat{\beta}_{1}\right)$
Default estimators for the SEs assume homoskedasticity or that the spread around the regression line is the same for all values of the independent variables.

Homoskedastic

Relatively easy fixes exist, but beyond the scope of this class.

Tests and Cls for regression

- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ can be written as weighted averages of the outcome...

Tests and Cls for regression

- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ can be written as weighted averages of the outcome...
- Which means they follow the Central Limit Theorem!

Tests and Cls for regression

- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ can be written as weighted averages of the outcome...
- Which means they follow the Central Limit Theorem!
- BAM! 95\% confidence intervals: $\hat{\beta}_{1} \pm 1.96 \times \widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)$

Tests and Cls for regression

- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ can be written as weighted averages of the outcome...
- Which means they follow the Central Limit Theorem!
- BAM! 95\% confidence intervals: $\hat{\beta}_{1} \pm 1.96 \times \widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)$
- BOOM! Hypothesis tests:

Tests and Cls for regression

- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ can be written as weighted averages of the outcome...
- Which means they follow the Central Limit Theorem!
- BAM! 95\% confidence intervals: $\hat{\beta}_{1} \pm 1.96 \times \widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)$
- BOOM! Hypothesis tests:
- Null hypothesis: $H_{0}: \beta_{1}=\beta_{1}^{*}$

Tests and Cls for regression

- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ can be written as weighted averages of the outcome...
- Which means they follow the Central Limit Theorem!
- BAM! 95\% confidence intervals: $\hat{\beta}_{1} \pm 1.96 \times \widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)$
- BOOM! Hypothesis tests:
- Null hypothesis: $H_{0}: \beta_{1}=\beta_{1}^{*}$
- Test statistic: $\frac{\hat{\beta}_{1}-\beta_{1}^{*}}{\operatorname{SE}\left(\hat{\beta}_{1}\right)} \sim N(0,1)$

Tests and Cls for regression

- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ can be written as weighted averages of the outcome...
- Which means they follow the Central Limit Theorem!
- BAM! 95\% confidence intervals: $\hat{\beta}_{1} \pm 1.96 \times \widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)$
- BOOM! Hypothesis tests:
- Null hypothesis: $H_{0}: \beta_{1}=\beta_{1}^{*}$
- Test statistic: $\frac{\hat{\beta}_{1}-\beta_{1}^{*}}{\operatorname{SE}\left(\hat{\beta}_{1}\right)} \sim N(0,1)$
- Usual test is of $\beta_{1}=0$.

Tests and Cls for regression

- $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ can be written as weighted averages of the outcome...
- Which means they follow the Central Limit Theorem!
- BAM! 95\% confidence intervals: $\hat{\beta}_{1} \pm 1.96 \times \widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)$
- BOOM! Hypothesis tests:
- Null hypothesis: $H_{0}: \beta_{1}=\beta_{1}^{*}$
- Test statistic: $\frac{\hat{\beta}_{1}-\beta_{1}^{*}}{\operatorname{SE}\left(\hat{\beta}_{1}\right)} \sim N(0,1)$
- Usual test is of $\beta_{1}=0$.
- $\hat{\beta}_{1}$ is statistically significant if its p-value from this test is below some threshold (usually 0.05)

```
ajr.reg <- lm(logpgp95 ~ avexpr, data = ajr)
summary(ajr.reg)
```

```
##
## Call:
## lm(formula = logpgp95 ~ avexpr, data = ajr)
##
## Residuals:
\begin{tabular}{lrrrr} 
\#\# & Min & 1Q Median & 3Q & Max \\
\#\# & -1.902 & -0.316 & 0.138 & 0.422
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# & Estimate Std. Error t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & 4.6261 & 0.3006 & 15.4 & \(<2 \mathrm{e}-16\) *** \\
\#\# avexpr & 0.5319 & 0.0406 & 13.1 & \(<2 \mathrm{e}-16\) ***
\end{tabular}
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.718 on 109 degrees of freedom
## (52 observations deleted due to missingness)
## Multiple R-squared: 0.611, Adjusted R-squared: 0.608
## F-statistic: 171 on 1 and 109 DF, p-value: <2e-16
```


Using broom with regression

library(broom)
 tidy(ajr.reg)

\#\# \# A tibble: 2×5

\#\#	term	estimate	std.error	statistic	p.value
\#\#	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\# 1	(Intercept)	4.63	0.301	15.4	$4.28 \mathrm{e}-29$
\#\# 2	avexpr	0.532	0.0406	13.1	$4.16 \mathrm{e}-24$

Multiple regression

- Correlation doesn't imply causation

Multiple regression

- Correlation doesn't imply causation
- Omitted variables \rightsquigarrow violation of exogeneity

Multiple regression

- Correlation doesn't imply causation
- Omitted variables \rightsquigarrow violation of exogeneity
- You can adjust for multiple confounding variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p} X_{i p}+\epsilon_{i}
$$

Multiple regression

- Correlation doesn't imply causation
- Omitted variables \rightsquigarrow violation of exogeneity
- You can adjust for multiple confounding variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p} X_{i p}+\epsilon_{i}
$$

- Interpretation of β_{j} : an increase in the outcome associated with a one-unit increase in $X_{i j}$ when other variables don't change their values

Multiple regression

- Correlation doesn't imply causation
- Omitted variables \rightsquigarrow violation of exogeneity
- You can adjust for multiple confounding variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p} X_{i p}+\epsilon_{i}
$$

- Interpretation of β_{j} : an increase in the outcome associated with a one-unit increase in $X_{i j}$ when other variables don't change their values
- Inference:

Multiple regression

- Correlation doesn't imply causation
- Omitted variables \rightsquigarrow violation of exogeneity
- You can adjust for multiple confounding variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p} X_{i p}+\epsilon_{i}
$$

- Interpretation of β_{j} : an increase in the outcome associated with a one-unit increase in $X_{i j}$ when other variables don't change their values
- Inference:
- Confidence intervals constructed exactly the same for $\hat{\beta}_{j}$

Multiple regression

- Correlation doesn't imply causation
- Omitted variables \rightsquigarrow violation of exogeneity
- You can adjust for multiple confounding variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p} X_{i p}+\epsilon_{i}
$$

- Interpretation of β_{j} : an increase in the outcome associated with a one-unit increase in $X_{i j}$ when other variables don't change their values
- Inference:
- Confidence intervals constructed exactly the same for $\hat{\beta}_{j}$
- Hypothesis tests done exactly the same for $\hat{\beta}_{j}$

Multiple regression

- Correlation doesn't imply causation
- Omitted variables \rightsquigarrow violation of exogeneity
- You can adjust for multiple confounding variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p} X_{i p}+\epsilon_{i}
$$

- Interpretation of β_{j} : an increase in the outcome associated with a one-unit increase in $X_{i j}$ when other variables don't change their values
- Inference:
- Confidence intervals constructed exactly the same for $\hat{\beta}_{j}$
- Hypothesis tests done exactly the same for $\hat{\beta}_{j}$
- \rightsquigarrow interpret p -values the same as before.

Using knitr : : kable to produce tables

```
ajr.multreg <- lm(logpgp95 ~ avexpr + lat_abst + asia + africa, data =
tidy(ajr.multreg) |>
    knitr::kable(digits = 3)
```

term	estimate	std.error	statistic	p.value
(Intercept)	5.840	0.339	17.239	0.000
avexpr	0.394	0.050	7.843	0.000
lat_abst	0.312	0.444	0.703	0.484
asia	-0.170	0.153	-1.108	0.270
africa	-0.930	0.165	-5.628	0.000

2/ Presenting OLS regressions

Regression tables

- In papers, you'll often find regression tables that have several models.

Regression tables

- In papers, you'll often find regression tables that have several models.
- Each column is a different regression:
- In papers, you'll often find regression tables that have several models.
- Each column is a different regression:
- Might differ by independent variables, dependent variables, sample, etc.
- In papers, you'll often find regression tables that have several models.
- Each column is a different regression:
- Might differ by independent variables, dependent variables, sample, etc.
- Standard errors, p-values, sample size, and R^{2} may be reported as well.

AJR regression table

VOL. 91 NO. 5
ACEMOGLU ET AL.: THE COLONIAL ORIGINS OF DEVELOPMENT

Table 2-OLS Regressions

Dependent variable
is log output per
Dependent variable is log GDP per capita in 1995

Average protection	0.54	0.52	0.47	0.43	0.47	0.41	0.45	0.46
against expropriation risk, 1985-1995	(0.04)	(0.06)	(0.06)	(0.05)	(0.06)	(0.06)	(0.04)	(0.06)
Latitude			0.89	0.37	1.60	0.92		
			(0.49)	(0.51)	(0.70)	(0.63)		
Asia dummy				-0.62		-0.60		
				(0.19)		(0.23)		
Africa dummy				-1.00		-0.90		
				(0.15)		(0.17)		
"Other" continent dummy				-0.25		-0.04		
				(0.20)		(0.32)		
R^{2}	0.62	0.54	0.63	0.73	0.56	0.69	0.55	0.49
Number of observations	110	64	110	110	64	64	108	61

model summary() to produce tables

We can use modelsummary () to produce a table. It takes a list of outputs from lm and aligns them in the correct way.
modelsummary::modelsummary(list(ajr.reg, ajr.multreg))

Output

modelsummary::modelsummary(list(ajr.reg, ajr.multreg))

	Model 1	Model 2
(Intercept)	4.626	5.840
	(0.301)	(0.339)
avexpr	0.532	0.394
	(0.041)	(0.050)
lat_abst		0.312
		(0.444)
asia		-0.170
		(0.153)
africa		-0.930
		(0.165)
Num.Obs.	111	111
R2	0.611	0.713
R2 Adj.	0.608	0.703
AIC	245.4	217.6
BIC	253.5	233.8
Log.Lik.	-119.709	-102.795
RMSE	0.71	0.61

Cleaning up the goodness of fit statistics

modelsummary: :modelsummary (
list(ajr.reg, ajr.multreg),

```
    gof_map = c("nobs", "r.squared", "adj.r.squared"))
```

	Model 1	Model 2
(Intercept)	4.626	5.840
	(0.301)	(0.339)
avexpr	0.532	0.394
	(0.041)	(0.050)
lat_abst		0.312
		(0.444)
asia		-0.170 (0.153) africa
		(0.165)
Num.Obs.	111	111
R2	0.611	0.713
R2 Adj.	0.608	0.703

Cleaning up the variable names

We can also map the variable names to more readable names using the coef_map argument. But first, we should do the mapping in a vector. Any term omitted from this vector will be omitted from the table

```
var_labels <- c(
    "avexpr" = "Avg. Expropriation Risk",
    "lat_abst" = "Abs. Value of Latitude",
    "asia" = "Asian country",
    "africa" = "African country"
)
var_labels
```

\#\#	avexpr	lat_abst
\#\# "Avg. Expropriation Risk"	"Abs. Value of Latitude"	
\#\#	asia	africa
\#\#	"Asian country"	"African country"

Nice table

```
modelsummary::modelsummary(
    list(ajr.reg, ajr.multreg),
    coef_map = var_labels,
    gof_map = c("nobs", "r.squared", "adj.r.squared"))
```

	Model 1	Model 2
Avg. Expropriation Risk	0.532	0.394
	(0.041)	(0.050)
Abs. Value of Latitude		0.312
		(0.444)
Asian country		-0.170
		(0.153)
African country		-0.930
		(0.165)
Num.Obs.	111	111
R2	0.611	0.713
R2 Adj.	0.608	0.703

3/ Wrapping up the class

Important takeaways from the course:

1. Data wrangling and data visualizations are really important skills that you now have!

Important takeaways from the course:

1. Data wrangling and data visualizations are really important skills that you now have!
2. Causality is hugely important in the world but difficult to establish.

Important takeaways from the course:

1. Data wrangling and data visualizations are really important skills that you now have!
2. Causality is hugely important in the world but difficult to establish.
3. Really important to understand and assess statistical uncertainty when working with data.

I'm really proud of you!

You've come a long way! Hopefully the tools you learned in this course will help you throughout your life and career!

What next?

- Gov 51 with Naijia Liu:

What next?

- Gov 51 with Naijia Liu:
- A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).

What next?

- Gov 51 with Naijia Liu:
- A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).
- Really helpful for students looking to write senior theses.

What next?

- Gov 51 with Naijia Liu:
- A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).
- Really helpful for students looking to write senior theses.
- Only need 3 more classes to finish the data science track in Gov!

What next?

- Gov 51 with Naijia Liu:
- A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).
- Really helpful for students looking to write senior theses.
- Only need 3 more classes to finish the data science track in Gov!
- More theoretical stats side: Stat 110/111

What next?

- Gov 51 with Naijia Liu:
- A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).
- Really helpful for students looking to write senior theses.
- Only need 3 more classes to finish the data science track in Gov!
- More theoretical stats side: Stat 110/111
- More CS approach to data science: CS109 (Data Science 1)

Thanks!

Fill out your evaluations!

