Gov 50: 24. More Inference with Mathematical Models

Matthew Blackwell

Harvard University

- 1. Confidence intervals for experiments
- 2. Hypothesis testing with the CLT
- 3. Two-sample tests

1/ Confidence intervals for experiments

- More interesting to compare across groups.
 - Differences in public opinion across groups
 - Difference between treatment and control groups.
- Bedrock of causal inference!

- Back to the Social Pressure Mailer GOTV example.
 - Primary election in MI 2006
- Treatment group: postcards showing their own and their neighbors' voting records.
 - Sample size of treated group, $n_T = 360$ (artificially reducing sample size to highlight the math)
- Control group: received nothing.
 - Sample size of the control group, $n_C = 1890$

- Outcome: $Y_i = 1$ if *i* voted, 0 otherwise.
- Turnout rate (sample mean) in treated group, $\overline{Y}_{T} = 0.37$
- Turnout rate (sample mean) in control group, $\overline{Y}_{C} = 0.30$
- Estimated average treatment effect

$$\widehat{\mathsf{ATE}} = \overline{Y}_{T} - \overline{Y}_{C} = 0.07$$

Inference for the difference

- Parameter: **population ATE** $\mu_T \mu_C$
 - μ_T : Turnout rate in the population if everyone received treatment.
 - μ_C : Turnout rate in the population if everyone received control.
- Estimator: $\widehat{ATE} = \overline{Y}_T \overline{Y}_C$

By the CLT in large samples, we know that:

•
$$\overline{Y}_T \approx N\left(\mu_T, \frac{\mu_T(1-\mu_T)}{n_C}\right)$$

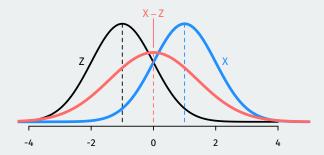
•
$$\overline{Y}_{C} \approx N\left(\mu_{C}, \frac{\mu_{C}(1-\mu_{C})}{n_{C}}\right)$$

•
$$\rightsquigarrow \overline{Y}_{T} - \overline{Y}_{C} \approx N(\mu_{T} - \mu_{C}, SE_{diff}^{2})$$

But what is the SE_{diff} in this case?

Spread of a difference in normals

If we take the difference between two independent normal r.v.s, what happens to the spread?



The spread of the difference is **larger** than the spread of the two variables being differenced!

Standard error for the estimated ATE

• SE of a difference in means **adds** the SEs for each group

$$SE_{\rm diff} = \sqrt{SE_T^2 + SE_C^2}$$

• Using what we know about SEs with binary outcomes:

$$SE_{\rm diff} = \sqrt{\frac{\mu_T(1-\mu_T)}{n_t} + \frac{\mu_C(1-\mu_C)}{n_C}}$$

- Chance errors $\overline{Y}_{T} \overline{Y}_{C} (\mu_{T} \mu_{C}) \approx N(0, SE_{diff})$
 - + We can construct a 95% CI with $\widehat{\text{ATE}} \pm 1.96 \times \textit{SE}_{\text{diff}}$

Confidence intervals

But we don't know μ_T or μ_C ! Plug in our sample proportions to estimate the SE:

$$\begin{split} \widehat{\mathsf{SE}}_{\mathsf{diff}} &= \sqrt{\frac{\overline{Y}_{\mathcal{T}}(1 - \overline{Y}_{\mathcal{T}})}{n_t}} + \frac{\overline{Y}_{\mathcal{C}}(1 - \overline{Y}_{\mathcal{C}})}{n_{\mathcal{C}}} \\ &= \sqrt{\frac{0.37 \times 0.63}{360} + \frac{0.3 \times 0.7}{1890}} = 0.028 \end{split}$$

Now we can construct confidence intervals based on the CLT like last time:

$$CI_{95} = \widehat{ATE} \pm 1.96 \times \widehat{SE}_{diff}$$

= 0.07 ± 1.96 × 0.028
= 0.07 ± 0.054
= [0.016, 0.124]

Range of possibilities taking into account plausible chance errors.

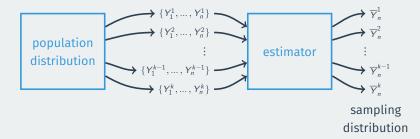
2/ Hypothesis testing with the CLT

- Statistical hypothesis testing is a **thought experiment**.
- What would the world look like if we knew the truth?
- Conducted with several steps:
 - 1. Specify your null and alternative hypotheses
 - 2. Choose an appropriate **test statistic** and level of test α
 - 3. Derive the reference distribution of the test statistic under the null.
 - 4. Use this distribution to calculate the **p-value**.
 - 5. Use p-value to decide whether to reject the null hypothesis or not

How popular is Joe Biden?

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll: $\overline{Y} = 0.42$ with n = 812
- Could we reject the null that Biden's national support is 50%?
 - Null: $H_0: p = 0.5$
 - Alternative: $H_1: p \neq 0.5$

Sampling distribution, in pictures



CLT for hypothesis testing

Under the null, we know the distribution of \overline{Y} :

$$\overline{Y} \approx N\left(p, \frac{p(1-p)}{n}\right) = N\left(0.5, \frac{0.5 \times 0.5}{812}\right)$$

Using the rules of normal transformations if $X \sim N(\mu, \sigma^2)$:

$$\frac{X-\mu}{\sigma} \sim \textit{N}(0,1)$$

Then under the null, know the distribution of the following test statistic:

$$Z = \frac{\overline{Y} - 0.5}{0.5/\sqrt{812}} \approx N(0, 1)$$

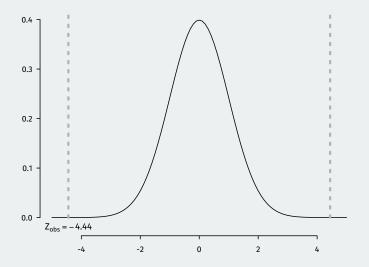
What we observe:

$$Z_{\text{obs}} = \frac{\overline{Y} - 0.5}{0.5/\sqrt{812}} = \frac{0.42 - 0.5}{0.5/\sqrt{812}}$$
$$= -\frac{0.08}{0.018} = -4.44$$

Our observed sample proportion is 4.44 SEs away from 0.5 under the null. What's the probability of being that far away? (**p-value**)

pnorm(-4.44, mean = 0, sd = 1) + ## prob being below -4.44
 (1 - pnorm(4.44, mean = 0, sd = 1)) ## prob being above 4.44

[1] 0.000009



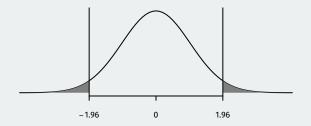
Generalizing hypothesis tests

- Hypothesis testing using the CLT pretty much takes this general form no matter what the estimator of interest is.
- Hypotheses: $H_0: \mu = \mu_0$ (null guess), $H_1: \mu \neq \mu_0$
- Test statistic:

$$Z = \frac{\text{observed value} - \text{null guess}}{\widehat{SE}} = \frac{\overline{Y} - \mu_0}{\widehat{SE}}$$

- The exact estimator for the standard error \widehat{SE} will depend on the estimator of interest.
- Null distribution: $Z \approx N(0, 1)$ by the CLT
- p-value: probability of a standard normal being bigger than $|Z_{obs}|$

Rejecting regions



- Reject if p-value is below α (usually 0.05).
 - We know 5% of the time Z will be bigger than 1.96.
 - + If $Z_{
 m obs} > 1.96$ or $Z_{
 m obs} < -1.96$, then the p-value must be below 0.05
 - We can reject if $|Z_{\rm obs}| > 1.96$

3/ Two-sample tests

- + Parameter: **population ATE** $\mu_T \mu_C$
- Goal: learn about the population difference in means
- Usual null hypothesis: no difference in population means (ATE = 0)
 - Null: $H_0: \mu_T \mu_C = 0$
 - Two-sided alternative: $H_1: \mu_T \mu_C \neq 0$
- In words: are the differences in sample means just due to chance?

Difference-in-means review

- Sample turnout rates: $\overline{Y}_T = 0.37$, $\overline{Y}_C = 0.30$
- Sample sizes: $n_T = 360$, $n_C = 1890$
- Estimator is the sample difference-in-means:

$$\widehat{\mathsf{ATE}} = \overline{Y}_T - \overline{Y}_C = 0.07$$

• Estimated SE for the difference in means:

$$\widehat{\mathsf{SE}}_{\mathsf{diff}} = \sqrt{\frac{\overline{Y}_{\mathcal{T}}(1 - \overline{Y}_{\mathcal{T}})}{n_{\mathcal{T}}} + \frac{\overline{Y}_{\mathcal{C}}(1 - \overline{Y}_{\mathcal{C}})}{n_{\mathcal{C}}}} = 0.028$$

CLT again and again

Earlier we saw that by the CLT we have:

$$\overline{\mathbf{Y}}_{T} - \overline{\mathbf{Y}}_{C} \approx N(\mu_{T} - \mu_{C}, \mathsf{SE}^{2}_{\mathsf{diff}})$$

We can use Z-scores to get a test statistic:

$$Z = \frac{(\overline{Y}_T - \overline{Y}_C) - (\mu_T - \mu_C)}{\mathsf{SE}_{\mathsf{diff}}} \sim \mathit{N}(0, 1)$$

Same general form of the test statistic as with one sample mean/proportion:

The usual null of no difference

- Null hypothesis: $H_0: \mu_T \mu_C = 0$
- Test statistic:

$$Z = \frac{(\overline{Y}_T - \overline{Y}_C) - (\mu_T - \mu_C)}{\mathsf{SE}_{\mathsf{diff}}} = \frac{(\overline{Y}_T - \overline{Y}_C) - \mathsf{0}}{\mathsf{SE}_{\mathsf{diff}}}$$

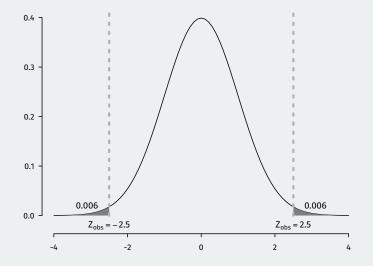
• In large samples, we can replace true SE with an estimate:

$$\widehat{\mathsf{SE}}_{\mathsf{diff}} = \sqrt{\widehat{\mathsf{SE}}_{\mathcal{T}}^2 + \widehat{\mathsf{SE}}_{\mathcal{C}}^2}$$

• Finally! Our test statistic in this sample:

$$Z = \frac{\overline{Y}_{T} - \overline{Y}_{C}}{\widehat{SE}_{diff}} = \frac{0.07}{0.028} = 2.5$$

- p-value based on a two-sided test: probability of getting a difference in means this big (or bigger) if the null hypothesis were true
 - Lower p-values \rightsquigarrow stronger evidence against the null.



2 * pnorm(2.5, lower.tail = FALSE)

[1] 0.0124