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Roadmap

1. Central limit theorem

2. Normal distribution

3. Using the Normal for inference
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1/ Central limit theorem
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Sampling distribution of the sample proportion

sample mean = population mean+ chance error
𝘟 = 𝜇 + chance error

Then 𝘟 centered at 𝜇.

Spread: standard deviation of the sampling distribution is the standard error
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Spread of the sample mean

• Standard error: how big is the chance error on average?

• This is the standard deviation of the estimator across repeated samples.
• With random samples, we can get a formula for the SE for many
estimators.

• Standard error for the sample mean:

𝘚𝘌 = 𝜎√𝘯 = population standard deviation
√sample size

• Two components:

• Population SD: more spread of the variable in the population → more
spread of sample means

• Size of the sample: larger sample → smaller spread of the sample means
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Midwest counties

Population distributions:
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Midwest counties

Sampling distributions with 𝘯 = 𝟣𝟢𝟢
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More population spread → higher SE
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Similarity in the bootstrap/null distributions
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Conditions for the CLT
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Central limit theorem: sums and means of random samples tend to be
normally distributed as the sample size grows.

Many, many estimators will follow the CLT and have a normal distribution
and will be easier to use this to do inference rather than doing increasingly
complicated simulations.
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2/ Normal distribution



Normal distribution

x
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• A normal distribution can be affect by two values:

• mean/expected value usually written as 𝜇
• variance written as 𝜎 𝟤 (standard deviation is 𝜎)
• Written 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤).

• Standard normal distribution: mean 0 and standard deviation 1.
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Reentering and scaling the normal
• How do transformations of a normal work?

• Let 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤) and 𝘤 be a constant.

• If 𝘡 = 𝘟 + 𝘤 , then 𝘡 ∼ 𝘕(𝜇 + 𝘤, 𝜎 𝟤).

• Intuition: adding a constant to a normal shifts the distribution by that
constant.

x

μ μ + 1
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Recentering and scaling the normal

• Let 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤) and 𝘤 be a constant.

• If 𝘡 = 𝘤𝘟 , then 𝘡 ∼ 𝘕(𝘤𝜇, (𝘤𝜎)𝟤).

• Intuition: multiplying a normal by a constant scales the mean and the
variance.

x

μ 2μ

12 / 25



Recentering and scaling the normal

• Let 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤) and 𝘤 be a constant.

• If 𝘡 = 𝘤𝘟 , then 𝘡 ∼ 𝘕(𝘤𝜇, (𝘤𝜎)𝟤).

• Intuition: multiplying a normal by a constant scales the mean and the
variance.

x

μ 2μ

12 / 25



Recentering and scaling the normal

• Let 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤) and 𝘤 be a constant.

• If 𝘡 = 𝘤𝘟 , then 𝘡 ∼ 𝘕(𝘤𝜇, (𝘤𝜎)𝟤).

• Intuition: multiplying a normal by a constant scales the mean and the
variance.

x

μ 2μ

12 / 25



Recentering and scaling the normal

• Let 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤) and 𝘤 be a constant.

• If 𝘡 = 𝘤𝘟 , then 𝘡 ∼ 𝘕(𝘤𝜇, (𝘤𝜎)𝟤).

• Intuition: multiplying a normal by a constant scales the mean and the
variance.

x

μ 2μ

12 / 25



Z-scores of normals

• These facts imply the z-score of a normal variable is a standard normal:

𝘻 = 𝘟 − 𝜇
𝜎 ∼ 𝘕(𝟢, 𝟣)

• Subtract the mean and divide by the SD⇝ standard normal.
• 𝘻-score measures how many SDs away from the mean a value of 𝘟 is.
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Normal probability calculations
What’s the probability of being below -1 for a standard normal?

x

-3 -2 -1 0 1 2 3

This is the area under the normal curve, which pnorm() function gives us
this:
pnorm(-1, mean = 0, sd = 1)

## [1] 0.159
14 / 25



Normal probability calculations
What’s the probability of being above -1 for a standard normal?

x

-3 -2 -1 0 1 2 3

Total area under the curve (1) minus the area below -1:
1 - pnorm(-1, mean = 0, sd = 1)

## [1] 0.841
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Normal quantiles
What if we want to know the opposite? What value of the normal distribution
puts 95% of the distribution below it?

x

?

This is a quantile and we can get it using qnorm():
qnorm(0.95, mean = 0, sd = 1)

## [1] 1.64
16 / 25



3/ Using the Normal for
inference



How popular is Joe Biden?

• What proportion of the public approves of Biden’s job as president?

• Latest Gallup poll:

• Sept 1st-16th
• 812 adult Americans
• Telephone interviews
• Approve (42%), Disapprove (56%)

• Define r.v. 𝘠𝘪 for Biden approval:

• 𝘠𝘪 = 𝟣⇝ respondent 𝘪 approves of Biden, 0 otherwise.
• 𝘱 = ℙ(𝘠𝘪 = 𝟣) the population proportion of Biden approvers.
• 𝘠 = 𝟢.𝟦𝟤 is the sample proportion.
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Standard errors for sample proportions

How variable will our sample proportion be? Depends on the standard error.

Special rule for SEs of sample proportion 𝘠 :

𝘚𝘌 for 𝘠 = √𝘱(𝟣 − 𝘱)
𝘯 = √(pop. proportion) × (𝟣 − pop. proportion)

sample size

Because we don’t know 𝘱, we replace it with our best guess, 𝘠 :

𝘚𝘌 = √𝘠 (𝟣 − 𝘠 )
𝘯

18 / 25



Standard errors for sample proportions

How variable will our sample proportion be? Depends on the standard error.

Special rule for SEs of sample proportion 𝘠 :

𝘚𝘌 for 𝘠 = √𝘱(𝟣 − 𝘱)
𝘯 = √(pop. proportion) × (𝟣 − pop. proportion)

sample size

Because we don’t know 𝘱, we replace it with our best guess, 𝘠 :

𝘚𝘌 = √𝘠 (𝟣 − 𝘠 )
𝘯

18 / 25



Standard errors for sample proportions

How variable will our sample proportion be? Depends on the standard error.

Special rule for SEs of sample proportion 𝘠 :

𝘚𝘌 for 𝘠 = √𝘱(𝟣 − 𝘱)
𝘯 = √(pop. proportion) × (𝟣 − pop. proportion)

sample size

Because we don’t know 𝘱, we replace it with our best guess, 𝘠 :

𝘚𝘌 = √𝘠 (𝟣 − 𝘠 )
𝘯

18 / 25



CLT for confidence intervals

𝘠 − 𝘱 = chance error

• How can we figure out a range of plausible chance errors?

• Find a range of plausible chance errors and add them to 𝘠
• With bootstrap, we used resampling to simulate chance error.

• Central limit theorem implies

𝘠 ≈ 𝘕 (𝘱, 𝘱(𝟣 − 𝘱)
𝘯 )

Chance error: 𝘠 − 𝘱 is approximately normal with mean 0 and SE equal
to √𝘱(𝟣 − 𝘱)/𝘯
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Chance errors

−3 × SE −2 × SE −SE 0 SE 2 × SE 3 × SE

If 𝘠 ∼ 𝘕(𝘱, 𝘚𝘌 𝟤), then chance errors are 𝘠 − 𝘱 ∼ 𝘕(𝟢, 𝘚𝘌 𝟤) so:
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Chance errors

− 1.64 × SE 0 1.64 × SE

0.90

If 𝘠 ∼ 𝘕(𝘱, 𝘚𝘌 𝟤), then chance errors are 𝘠 − 𝘱 ∼ 𝘕(𝟢, 𝘚𝘌 𝟤) so:

• ≈ 90% of chance errors 𝘠 − 𝘱 are within 1.64 SEs of the mean.
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Chance errors

− 1.96 × SE 0 1.96 × SE

0.95

If 𝘠 ∼ 𝘕(𝘱, 𝘚𝘌 𝟤), then chance errors are 𝘠 − 𝘱 ∼ 𝘕(𝟢, 𝘚𝘌 𝟤) so:

• ≈ 90% of chance errors 𝘠 − 𝘱 are within 1.64 SEs of the mean.
• ≈ 95% of chance errors 𝘠 − 𝘱 are within 1.96 SEs of the mean.
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Chance errors

−2.58 × SE 0 2.58 × SE

0.99

If 𝘠 ∼ 𝘕(𝘱, 𝘚𝘌 𝟤), then chance errors are 𝘠 − 𝘱 ∼ 𝘕(𝟢, 𝘚𝘌 𝟤) so:

• ≈ 90% of chance errors 𝘠 − 𝘱 are within 1.64 SEs of the mean.
• ≈ 95% of chance errors 𝘠 − 𝘱 are within 1.96 SEs of the mean.
• ≈ 99% of chance errors 𝘠 − 𝘱 are within 2.58 SEs of the mean.

This implies we can build a 95% confidence interval with 𝘠 ± 𝟣.𝟫𝟨 × 𝘚𝘌
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How did we get those values?

• First, choose a confidence level.

• What percent of chance errors do you want to count as “plausible”?
• Convention is 95%.

• 𝟣𝟢𝟢 × (𝟣 − 𝛼)% confidence interval:

𝘊𝘐 = 𝘠 ± 𝘻𝛼/𝟤 × 𝘚𝘌

• In polling, ±𝘻𝛼/𝟤 × 𝘚𝘌 is called the margin of error

• 𝘻𝛼/𝟤 is the 𝘕(𝟢, 𝟣) z-score that would put 𝛼/𝟤 in the upper tail:

• ℙ(−𝘻𝛼/𝟤 < 𝘡 < 𝘻𝛼/𝟤) = 𝛼
• 90% CI⇝ 𝛼 = 𝟢.𝟣⇝ 𝘻𝛼/𝟤 = 𝟣.𝟨𝟦
• 95% CI⇝ 𝛼 = 𝟢.𝟢𝟧⇝ 𝘻𝛼/𝟤 = 𝟣.𝟫𝟨
• 99% CI⇝ 𝛼 = 𝟢.𝟢𝟣⇝ 𝘻𝛼/𝟤 = 𝟤.𝟧𝟪
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Standard normal z-scores in R

qnorm(x, lower.tail = FALSE) will find the quantile of 𝘕(𝟢, 𝟣) that
puts 𝘹 in the upper tail:
qnorm(0.05, lower.tail = FALSE)

## [1] 1.64
qnorm(0.025, lower.tail = FALSE)

## [1] 1.96
qnorm(0.005, lower.tail = FALSE)

## [1] 2.58
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