Gov 50: 22. More Hypothesis testing

Matthew Blackwell

Harvard University

- 1. Reviewing hypothesis testing
- 2. Issues with hypothesis testing
- 3. Power Analyses

1/ Reviewing hypothesis testing

Difference-in-means

library(gov50data) trains <- trains |> mutate(treated = if_else(treatment == 1, "Treated", "Untreated"))

##	# A	A tibbl	le: 115	5 x 15					
##		age	male	income	white	college	usborn	treatment	ideol~1
##		<dbl></dbl>							
##	1	31	Θ	135000	1	1	1	1	3
##	2	34	Θ	105000	1	1	Θ	1	4
##	3	63	1	135000	1	1	1	1	2
##	4	45	1	300000	1	1	1	1	4
##	5	55	1	135000	1	1	1	Θ	2
##	6	37	Θ	87500	1	1	1	1	5
##	7	53	Θ	87500	1	Θ	1	Θ	5
##	8	36	1	135000	1	1	1	1	4
##	9	54	Θ	105000	1	Θ	1	Θ	3
##	10	42	1	135000	1	1	1	1	4

... with 105 more rows, 7 more variables:

numberim.pre <dbl>, numberim.post <dbl>, ## #

remain.pre <dbl>, remain.post <dbl>, english.pre <dbl>, ## #

english.post <dbl>, treated <chr>, and abbreviated ## #

```
library(infer)
ate <- trains |>
   specify(numberim.post ~ treated) |>
   calculate(stat = "diff in means",
        order = c("Treated", "Untreated"))
att
```

ate

```
## Response: numberim.post (numeric)
## Explanatory: treated (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.383
```

Hypotheses:

Observed difference in means:

$$H_0: \mu_T - \mu_C = 0$$
$$H_1: \mu_T - \mu_c \neq 0$$

$$\widehat{ATE} = \overline{Y}_T - \overline{Y}_C$$

How can we approximate the **null distribution**? **Permute** the outcome/treatment variables.

Let's do 2 permutations to see how things vary:

```
set.seed(02138)
perm <- trains |>
  specify(numberim.post ~ treated) |>
  hypothesize(null = "independence") |>
  generate(reps = 1000,
        type = "permute")
```

generate(type = "permute") shuffles to the outcomes, keeping treatment the same:

pe	rm >	<pre>filter(replicate ==</pre>	= 1)	pe	rm	> filter	(replicate ==	: 2)
## # A tibble: 115 x 3				## # A tibble: 115 x 3				
##	<pre>## # Groups: replicate [1]</pre>				<pre>## # Groups: replicate [1]</pre>			
##	num	berim.post treated	replicate	##	1	numberim.	post treated	replicate
##		<dbl> <fct></fct></dbl>	<int></int>	##		<dł< td=""><td>ol> <fct></fct></td><td><int></int></td></dł<>	ol> <fct></fct>	<int></int>
##	1	3 Treated	1	##	1		2 Treated	2
##	2	2 Treated	1	##	2		3 Treated	2
##	3	5 Treated	1	##	3		3 Treated	2
##	4	3 Treated	1	##	4		3 Treated	2
##	5	3 Untreated	1	##	5		3 Untreated	2
##	6	3 Treated	1	##	6		4 Treated	2
##	7	2 Untreated	1	##	7		2 Untreated	2
##	8	2 Treated	1	##	8		3 Treated	2
##	9	3 Untreated	1	##	9		3 Untreated	2
##	10	3 Treated	1	##	10		2 Treated	2
##	#	with 105 more rows	S	##	#	with	105 more rows	

The distribution of the differences-in-means under permutation will be mean 0 because shuffling the outcomes means that the outcomes in each permutation's treated and control group are coming from the same distribution.

```
null_dist <- trains |>
  specify(numberim.post ~ treated) |>
  hypothesize(null = "independence") |>
  generate(reps = 1000,
        type = "permute") |>
  calculate(stat = "diff in means", order = c("Treated", "Untreated"))
```

null_dist |> visualize() + shade_p_value(obs_stat = ate, direction = "both")

Interpreting p-values

get_p_value(null_dist, obs_stat = ate, direction = "both")

```
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.022
```

Hypotheses:

Observed difference in means:

 $H_0: \mu_T - \mu_C = 0 \qquad \qquad \widehat{ATE} = \overline{Y}_T - \overline{Y}_C$ $H_1: \mu_T - \mu_C \neq 0$

p-value: probability of an estimated ATE as big as $|\widehat{ATE}|$ by random chance if there is no treatment effect.

Decision rule: "reject the null if the p-value is below the **test level** α "

Rejecting the null in two-sample tests: there is a true difference in means.

Test level α controls the amount of false positives:

	Null False (True difference)	Null True (No true difference)
Reject Null	True Positive	False Positive (Type I error)
Retain Null	False Negative (Type II error)	True Negative

- There is a deep connection between confidence intervals and tests.
- Any value outside of a $100 \times (1 \alpha)$ % confidence interval would have a p-value less than α if we tested it as the null hypothesis.
 - 95% CI for social pressure experiment: [0.016, 0.124]
 - \rightsquigarrow p-value for $H_0: \mu_T \mu_C = 0$ less than 0.05.
- Confidence intervals are all of the null hypotheses we **can't reject** with a test.

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0893 0.698
```

2/ Issues with hypothesis testing

Significant vs not significant

The difference between statistically significant and not statistically significant is itself not statistically significant:

BEWARE FALSE CONCLUSIONS

Studies currently dubbed 'statistically significant' and 'statistically non-significant' need not be contradictory, and such designations might cause genuine effects to be dismissed.

There are different types of significance that don't all have to be true together:

- 1. **Statistical significance:** we can reject the null of no effect.
- 2. **Causal significance**: we can interpret our estimated difference in means as a causal effect.
- 3. **Practical significance**: the estimated effect is meaningfully large.

p-hacking

p-hacking

3/ Power Analyses

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election

	Experimental Group				
	Control	Civic Duty	Hawthorne	Self	Neighbors
Percentage Voting	29.7%	31.5%	32.2%	34.5%	37.8%
N of Individuals	191,243	38,218	38,204	38,218	38,201

- Why did Gerber, Green, and Larimer use sample sizes of 38,000 for each treatment condition?
- Choose the sample size to ensure that you can *detect* what you think might be the true treatment effect:
 - Small effect sizes (half percentage point) will require huge *n*
 - Large effect sizes (10 percentage points) will require smaller n
- Detect here means "reject the null of no effect"

- **Definition** The **power** of a test is the probability that a test rejects the null.
 - Probability that we reject given some specific value of the parameter
 - + Power = $1 \mathbb{P}(\text{Type II error})$
 - Better tests = higher power.
- If we fail to reject a null hypothesis, two possible states of the world:
 - Null is true (no treatment effect)
 - Null is false (there is a treatment effect), but test had low power.

- Imagine you are a company being sued for racial discrimination in hiring.
- Judge forces you to conduct hypothesis test:
 - + Null hypothesis is that hiring rates for white and black people are equal, $H_0: \mu_w-\mu_b=0$
 - You sample 10 hiring records of each race, conduct hypothesis test and fail to reject null.
- Say to judge, "look we don't have any racial discrimination"! What's the problem?

Power analysis procedure

- Power can help guide the choice of sample size through a **power analysis**.
 - Calculate how likely we are to reject different possible treatment effects at different sample sizes.
 - **Can be done before the experiment**: which effects will I be able to detect with high probability at my *n*?
- Steps to a power analysis:
 - Pick some hypothetical effect size, $\mu_T \mu_C = 0.05$
 - Calculate the distribution of \mathcal{T} under that effect size.
 - Calculate the probability of rejecting the null under that distribution.
 - Repeat for different effect sizes.

Assumed treatment effect = 0.05 and power = 0.24.

Assumed treatment effect = -0.2 and power = 0.999.

Assumed treatment effect = -0.1 and power = 0.705.

Assumed treatment effect = -0.05 and power = 0.24.

Assumed treatment effect = 0 and power = 0.05.

Assumed treatment effect = 0.05 and power = 0.24.

Assumed treatment effect = 0.1 and power = 0.705.

Assumed treatment effect = 0.2 and power = 0.999.

A power analysis

- We can calculate the power for every possible effect size and plot the resulting **power curve**:
 - n = 500 (blue), 1000 (red), 10000 (black)

