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1/ Reviewing hypothesis
testing



Difference-in-means
library(gov50data)
trains <- trains |>
mutate(treated = if_else(treatment == 1, ”Treated”, ”Untreated”))

trains

## # A tibble: 115 x 15
## age male income white college usborn treatment ideol~1
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 31 0 135000 1 1 1 1 3
## 2 34 0 105000 1 1 0 1 4
## 3 63 1 135000 1 1 1 1 2
## 4 45 1 300000 1 1 1 1 4
## 5 55 1 135000 1 1 1 0 2
## 6 37 0 87500 1 1 1 1 5
## 7 53 0 87500 1 0 1 0 5
## 8 36 1 135000 1 1 1 1 4
## 9 54 0 105000 1 0 1 0 3
## 10 42 1 135000 1 1 1 1 4
## # ... with 105 more rows, 7 more variables:
## # numberim.pre <dbl>, numberim.post <dbl>,
## # remain.pre <dbl>, remain.post <dbl>, english.pre <dbl>,
## # english.post <dbl>, treated <chr>, and abbreviated
## # variable name 1: ideology
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Calculating the ATE

library(infer)
ate <- trains |>
specify(numberim.post ~ treated) |>
calculate(stat = ”diff in means”,

order = c(”Treated”, ”Untreated”))
ate

## Response: numberim.post (numeric)
## Explanatory: treated (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.383
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Difference in means hypotheses

Hypotheses:

𝘏𝟢 ∶𝜇𝘛 − 𝜇𝘊 = 𝟢
𝘏𝟣 ∶𝜇𝘛 − 𝜇𝘤 ≠ 𝟢

Observed difference in means:

𝘈𝘛𝘌 = 𝘠 𝘛 − 𝘠 𝘊

How can we approximate the null distribution? Permute the
outcome/treatment variables.
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Permuting the treatment

Let’s do 2 permutations to see how things vary:
set.seed(02138)
perm <- trains |>
specify(numberim.post ~ treated) |>
hypothesize(null = ”independence”) |>
generate(reps = 1000,

type = ”permute”)
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generate(type = ”permute”) shuffles to the outcomes, keeping
treatment the same:

perm |> filter(replicate == 1)

## # A tibble: 115 x 3
## # Groups: replicate [1]
## numberim.post treated replicate
## <dbl> <fct> <int>
## 1 3 Treated 1
## 2 2 Treated 1
## 3 5 Treated 1
## 4 3 Treated 1
## 5 3 Untreated 1
## 6 3 Treated 1
## 7 2 Untreated 1
## 8 2 Treated 1
## 9 3 Untreated 1
## 10 3 Treated 1
## # ... with 105 more rows

perm |> filter(replicate == 2)

## # A tibble: 115 x 3
## # Groups: replicate [1]
## numberim.post treated replicate
## <dbl> <fct> <int>
## 1 2 Treated 2
## 2 3 Treated 2
## 3 3 Treated 2
## 4 3 Treated 2
## 5 3 Untreated 2
## 6 4 Treated 2
## 7 2 Untreated 2
## 8 3 Treated 2
## 9 3 Untreated 2
## 10 2 Treated 2
## # ... with 105 more rows
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Null distribution

The distribution of the differences-in-means under permutation will be
mean 0 because shuffling the outcomes means that the outcomes in each
permutation’s treated and control group are coming from the same
distribution.
null_dist <- trains |>
specify(numberim.post ~ treated) |>
hypothesize(null = ”independence”) |>
generate(reps = 1000,

type = ”permute”) |>
calculate(stat = ”diff in means”, order = c(”Treated”, ”Untreated”))
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null_dist |>
visualize() +
shade_p_value(obs_stat = ate, direction = ”both”)
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Interpreting p-values

get_p_value(null_dist, obs_stat = ate, direction = ”both”)

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.022

Hypotheses:

𝘏𝟢 ∶𝜇𝘛 − 𝜇𝘊 = 𝟢
𝘏𝟣 ∶𝜇𝘛 − 𝜇𝘤 ≠ 𝟢

Observed difference in means:

𝘈𝘛𝘌 = 𝘠 𝘛 − 𝘠 𝘊

p-value: probability of an estimated ATE as big as |𝘈𝘛𝘌| by random chance
if there is no treatment effect.
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Rejecting the null

Decision rule: “reject the null if the p-value is below the test level 𝛼”

Rejecting the null in two-sample tests: there is a true difference in means.

Test level 𝛼 controls the amount of false positives:

Null False (True difference) Null True (No true difference)

Reject Null True Positive False Positive (Type I error)
Retain Null False Negative (Type II error) True Negative
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Tests and confidence intervals

• There is a deep connection between confidence intervals and tests.

• Any value outside of a 𝟣𝟢𝟢 × (𝟣 − 𝛼)% confidence interval would have a
p-value less than 𝛼 if we tested it as the null hypothesis.

• 95% CI for social pressure experiment: [𝟢.𝟢𝟣𝟨, 𝟢.𝟣𝟤𝟦]
• ⇝ p-value for 𝘏𝟢 ∶ 𝜇𝘛 − 𝜇𝘊 = 𝟢 less than 0.05.

• Confidence intervals are all of the null hypotheses we can’t reject with
a test.
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CI in the trains example

trains |>
specify(numberim.post ~ treated) |>
generate(reps = 1000, type = ”bootstrap”) |>
calculate(stat = ”diff in means”,

order = c(”Treated”, ”Untreated”)) |>
get_ci(level = 0.95)

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0893 0.698
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2/ Issues with hypothesis
testing



Significant vs not significant
The difference between statistically significant and not statistically
significant is itself not statistically significant:
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What kind of significance

There are different types of significance that don’t all have to be true
together:

1. Statistical significance: we can reject the null of no effect.

2. Causal significance: we can interpret our estimated difference in
means as a causal effect.

3. Practical significance: the estimated effect is meaningfully large.
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p-hacking
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p-hacking
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3/ Power Analyses



Effect sizes

• Why did Gerber, Green, and Larimer use sample sizes of 38,000 for each
treatment condition?

• Choose the sample size to ensure that you can detect what you think
might be the true treatment effect:

• Small effect sizes (half percentage point) will require huge 𝘯
• Large effect sizes (10 percentage points) will require smaller 𝘯

• Detect here means “reject the null of no effect”
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Power of a test

• Definition The power of a test is the probability that a test rejects the
null.

• Probability that we reject given some specific value of the parameter
• Power = 𝟣 − ℙ(Type II error)
• Better tests = higher power.

• If we fail to reject a null hypothesis, two possible states of the world:

• Null is true (no treatment effect)
• Null is false (there is a treatment effect), but test had low power.
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Why care about power?

• Imagine you are a company being sued for racial discrimination in
hiring.

• Judge forces you to conduct hypothesis test:

• Null hypothesis is that hiring rates for white and black people are equal,
𝘏𝟢 ∶ 𝜇𝘸 − 𝜇𝘣 = 𝟢

• You sample 10 hiring records of each race, conduct hypothesis test and
fail to reject null.

• Say to judge, “look we don’t have any racial discrimination”! What’s the
problem?
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Power analysis procedure

• Power can help guide the choice of sample size through a power
analysis.

• Calculate how likely we are to reject different possible treatment effects
at different sample sizes.

• Can be done before the experiment: which effects will I be able to detect
with high probability at my 𝘯?

• Steps to a power analysis:

• Pick some hypothetical effect size, 𝜇𝘛 − 𝜇𝘊 = 𝟢.𝟢𝟧
• Calculate the distribution of 𝘛 under that effect size.
• Calculate the probability of rejecting the null under that distribution.
• Repeat for different effect sizes.
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A power analysis
• We can calculate the power for every possible effect size and plot the
resulting power curve:

• 𝘯 = 500 (blue), 1000 (red), 10000 (black)
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