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1/ Reviewing hypothesis
testing



Difference

library(gov50data)

trains <- trains |[>
mutate(treated = if_else(treatment == 1, "Treated”, "Untreated”))
trains

## # A tibble: 115 x 15

#it age male income white college usborn treatment ideol~1
## <db1l> <dbl> <dbl> <dbl> <dbl> <dbl> <db1l> <db1>
# 1 31 0 135000 1 1 1 1 3
Ht 2 34 0 105000 1 1 0 1 4
## 3 63 1 135000 1 1 1 1 2
##t 4 45 1 300000 1 1 1 1 4
##t 5 55 1 135000 1 1 1 0 2
## 6 37 0 87500 1 1 1 1 5
#t 7 53 0 87500 1 0 1 0 5
#t 8 36 1 135000 1 1 1 1 4
## 9 54 0 105000 1 0 1 0 3
##t 10 42 1 135000 1 1 1 1 4
## # ... with 105 more rows, 7 more variables:

#it # numberim.pre <dbl>, numberim.post <dbl>,

## #  remain.pre <dbl>, remain.post <dbl>, english.pre <dbl>,
## #  english.post <dbl>, treated <chr>, and abbreviated
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Calculating the ATE

library(infer)
ate <- trains |[>
specify(numberim.post ~ treated) |>

calculate(stat = "diff in means”,
order = c(”Treated”, "Untreated”))

ate

## Response: numberim.post (numeric)
## Explanatory: treated (factor)
## # A tibble: 1 x 1

H#t stat
#it <dbl>
## 1 0.383
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Difference in means hypotheses

Hypotheses: Observed difference in means:

Ho sy —pc =0 ATE=Y;-Y¢
Hy sty = # 0
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Difference in means hypotheses

Hypotheses: Observed difference in means:
Ho sy —pc =0 ﬁz?r—vc
Hy sty = # 0

How can we approximate the null distribution? Permute the
outcome/treatment variables.
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Permuting the treatment

Let's do 2 permutations to see how things vary:

set.seed(02138)
perm <- trains |[>
specify(numberim.post ~ treated) |>

hypothesize(null = "independence”) |[>
generate(reps = 1000,
type = "permute”)
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generate(type = "permute”) shuffles to the outcomes, keeping
treatment the same:

perm |> filter(replicate == 1) perm |> filter(replicate == 2)

## # A tibble: 115 x 3 ## # A tibble: 115 x 3

## # Groups: replicate [1] ## # Groups: replicate [1]

## numberim.post treated replicate ## numberim.post treated replicate
#it <dbl> <fct> <int> #it <dbl> <fct> <int>
##t 1 3 Treated 1 ##t 1 2 Treated 2
#it 2 2 Treated 1 #it 2 3 Treated 2
#it 3 5 Treated 1 #t 3 3 Treated 2
##t 4 3 Treated 1 ##t 4 3 Treated 2
## 5 3 Untreated 1 ## 5 3 Untreated 2
#t 6 3 Treated 1 ##t 6 4 Treated 2
#t 7 2 Untreated 1 #t 7 2 Untreated 2
## 8 2 Treated 1 ## 8 3 Treated 2
#t 9 3 Untreated 1 #t 9 3 Untreated 2
## 10 3 Treated 1 ## 10 2 Treated 2

## # ... with 105 more rows ## # ... with 105 more rows
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Null distribution

The distribution of the differences-in-means under permutation will be
mean 0 because shuffling the outcomes means that the outcomes in each
permutation’s treated and control group are coming from the same
distribution.
null_dist <- trains |>

specify(numberim.post ~ treated) |>

hypothesize(null = "independence”) |[>

generate(reps = 1000,

type = "permute”) |>

calculate(stat = "diff in means”, order = c(”"Treated”, "Untreated”))
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null_dist [>
visualize() +

shade_p_value(obs_stat = ate, direction = "both”)

Simulation-Based Null Distribution
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Interpreting p-values

get_p_value(null_dist, obs_stat = ate, direction =

## # A tibble: 1 x 1
##t p_value
#it <db1l>
## 1 0.022
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Interpreting p-values

get_p_value(null_dist, obs_stat

H
H
Hit
#i

# A tibble: 1 x 1

1

p_value
<dbl>
0.022

Hypotheses:

Ho sy —pc =0
Hy s —pe #0

ate, direction =

Observed difference in means:
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Interpreting p-values

get_p_value(null_dist, obs_stat = ate, direction =

## # A tibble: 1 x 1
##t p_value

#it <db1>

## 1 0.022

Hypotheses: Observed difference in means:
Hy :ur —pc =0 ;x?:E'::S7T'—'S7C
Hy sy —ue #0

p-value: probability of an estimated ATE as big as |ﬁ\ by random chance
if there is no treatment effect.
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Rejecting the null

Decision rule: “reject the null if the p-value is below the test level o”
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Rejecting the null

Decision rule: “reject the null if the p-value is below the test level o”

Rejecting the null in two-sample tests: there is a true difference in means.

Test level a controls the amount of false positives:

Null False (True difference) Null True (No true difference)

Reject Null  True Positive False Positive (Type | error)
Retain Null ~ False Negative (Type Il error)  True Negative
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Tests and confidence intervals

 There is a deep connection between confidence intervals and tests.
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Tests and confidence intervals

 There is a deep connection between confidence intervals and tests.

+ Any value outside of a 100 x (1 — a)% confidence interval would have a
p-value less than o if we tested it as the null hypothesis.

+ 95% Cl for social pressure experiment: [0.016,0.124]
« ~ p-value for H, : uy+ — uc = 0 less than 0.05.

+ Confidence intervals are all of the null hypotheses we can’t reject with
a test.
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Clin the trains example

trains |>
specify(numberim.post ~ treated) |>
generate(reps = 1000, type = "bootstrap”) [|>

calculate(stat = "diff in means”,
order = c(”Treated”, "Untreated”)) |>
get_ci(level = 0.95)

## # A tibble: 1 x 2

##  lower_ci upper_ci
#it <db1l> <db1l>
#t 1 0.0893 0.698
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2] Issues with hypothesis
testing



Significant vs not significant

The difference between statistically significant and not statistically
significant is itself not statistically significant:

BEWARE FALSE CONCLUSIONS

Studies currently dubbed ‘statistically significant’ and ‘statistically
non-significant’ need not be contradictory, and such designations might
cause genuine effects to be dismissed.

— ‘Significant’ study
(low P value)

‘Non-significant” study
(high P value)

= ed effe
or point estimate

Decreased effect 4 No effect ™ Increased effect enamre
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What kind of significance

There are different types of significance that don’t all have to be true
together:

1. Statistical significance: we can reject the null of no effect.
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What kind of significance

There are different types of significance that don’t all have to be true
together:

1. Statistical significance: we can reject the null of no effect.

2. Causal significance: we can interpret our estimated difference in
means as a causal effect.

3. Practical significance: the estimated effect is meaningfully large.
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3/ Power Analyses



Effect sizes

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election
Experimental Group
Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

+ Why did Gerber, Green, and Larimer use sample sizes of 38,000 for each
treatment condition?
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TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election

Experimental Group

Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

+ Why did Gerber, Green, and Larimer use sample sizes of 38,000 for each
treatment condition?

+ Choose the sample size to ensure that you can detect what you think
might be the true treatment effect:

- Small effect sizes (half percentage point) will require huge n
- Large effect sizes (10 percentage points) will require smaller n

+ Detect here means “reject the null of no effect”

18/23



Power of a test

- Definition The power of a test is the probability that a test rejects the
null.

19/23



Power of a test

- Definition The power of a test is the probability that a test rejects the
null.

+ Probability that we reject given some specific value of the parameter

19/23



Power of a test

- Definition The power of a test is the probability that a test rejects the
null.

+ Probability that we reject given some specific value of the parameter
+ Power =1 — P(Type Il error)

19/23



Power of a test

- Definition The power of a test is the probability that a test rejects the
null.

+ Probability that we reject given some specific value of the parameter
+ Power =1 — P(Type Il error)
+ Better tests = higher power.

19/23



Power of a test

- Definition The power of a test is the probability that a test rejects the
null.

+ Probability that we reject given some specific value of the parameter
+ Power =1 — P(Type Il error)
+ Better tests = higher power.

« If we fail to reject a null hypothesis, two possible states of the world:

19/23



Power of a test

- Definition The power of a test is the probability that a test rejects the
null.

+ Probability that we reject given some specific value of the parameter
+ Power =1 — P(Type Il error)
+ Better tests = higher power.

« If we fail to reject a null hypothesis, two possible states of the world:

+ Nullis true (no treatment effect)

19/23



Power of a test

- Definition The power of a test is the probability that a test rejects the
null.

+ Probability that we reject given some specific value of the parameter
+ Power =1 — P(Type Il error)
+ Better tests = higher power.

« If we fail to reject a null hypothesis, two possible states of the world:

+ Nullis true (no treatment effect)
+ Null is false (there is a treatment effect), but test had low power.
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Why care about power?

+ Imagine you are a company being sued for racial discrimination in
hiring.
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Why care about power?

+ Imagine you are a company being sued for racial discrimination in
hiring.
« Judge forces you to conduct hypothesis test:

+ Null hypothesis is that hiring rates for white and black people are equal,

HO Py — My = 0
+ You sample 10 hiring records of each race, conduct hypothesis test and

fail to reject null.

- Say to judge, “look we don’t have any racial discrimination”! What's the

problem?
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Power analysis procedure

« Power can help guide the choice of sample size through a power
analysis.
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Power analysis procedure

« Power can help guide the choice of sample size through a power
analysis.

+ Calculate how likely we are to reject different possible treatment effects

at different sample sizes.
- Can be done before the experiment: which effects will | be able to detect

with high probability at my n?

- Steps to a power analysis:

+ Pick some hypothetical effect size, u+ — uc = 0.05

+ Calculate the distribution of T under that effect size.

+ Calculate the probability of rejecting the null under that distribution.
+ Repeat for different effect sizes.
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A power analysis

+ We can calculate the power for every possible effect size and plot the
resulting power curve:
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A power analysis

+ We can calculate the power for every possible effect size and plot the

resulting power curve:
« n =500 (blue), 1000 (red), 10000 (black)
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