
Gov 50: 21. More
Hypothesis testing
Matthew Blackwell

Harvard University

1 / 25

Roadmap

1. Hypothesis testing using infer

2. Two-sample tests

3. Two-sample permutation tests with infer

2 / 25

1/ Hypothesis testing
using infer

Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses
2. Choose an appropriate test statistic and level of test 𝛼
3. Derive the reference distribution of the test statistic under the null.
4. Use this distribution to calculate the p-value.
5. Use p-value to decide whether to reject the null hypothesis or not

3 / 25

GSS data from infer

library(infer)
gss

A tibble: 500 x 11
year age sex college partyid hompop hours income
<dbl> <dbl> <fct> <fct> <fct> <dbl> <dbl> <ord>
1 2014 36 male degree ind 3 50 $25000~
2 1994 34 female no degree rep 4 31 $20000~
3 1998 24 male degree ind 1 40 $25000~
4 1996 42 male no degree ind 4 40 $25000~
5 1994 31 male degree rep 2 40 $25000~
6 1996 32 female no degree rep 4 53 $25000~
7 1990 48 female no degree dem 2 32 $25000~
8 2016 36 female degree ind 1 20 $25000~
9 2000 30 female degree rep 5 40 $25000~
10 1998 33 female no degree dem 2 40 $15000~
... with 490 more rows, and 3 more variables:
class <fct>, finrela <fct>, weight <dbl>

4 / 25

What is the average hours worked?
dplyr way:
gss |>
summarize(mean(hours))

A tibble: 1 x 1
`mean(hours)`
<dbl>
1 41.4

infer way:
observed_mean <- gss |>
specify(response = hours) |>
calculate(stat = ”mean”)

observed_mean

Response: hours (numeric)
A tibble: 1 x 1
stat
<dbl>
1 41.4

5 / 25

Hypothesis test

Could we get a mean this different from 40 hours if that was the true
population average of hours worked?

Null and alternative:
𝘏𝟢 ∶𝜇hours = 𝟦𝟢
𝘏𝟣 ∶𝜇hours ≠ 𝟦𝟢

How do we perform this test using infer? The bootstrap!

6 / 25

Specifying the hypotheses
gss |>
specify(response = hours) |>
hypothesize(null = ”point”, mu = 40)

Response: hours (numeric)
Null Hypothesis: point
A tibble: 500 x 1
hours
<dbl>
1 50
2 31
3 40
4 40
5 40
6 53
7 32
8 20
9 40
10 40
... with 490 more rows

7 / 25

Generating the null distribution
We can use the bootstrap to determine how much variation there will be
around 40 in the null distribution.
null_dist <- gss |>
specify(response = hours) |>
hypothesize(null = ”point”, mu = 40) |>
generate(reps = 1000, type = ”bootstrap”) |>
calculate(stat = ”mean”)

null_dist

Response: hours (numeric)
Null Hypothesis: point
A tibble: 1,000 x 2
replicate stat
<int> <dbl>
1 1 40.3
2 2 39.6
3 3 40.8
4 4 39.6
5 5 39.8
6 6 39.8
7 7 40.6
8 8 40.5
9 9 38.6
10 10 41.2
... with 990 more rows

8 / 25

Visualizing the p-value

We can visualize our bootstrapped null distribution and the p-value as a
shaded region:
null_dist |>
visualize() +
shade_p_value(observed_mean,

direction = ”two-sided”)

9 / 25

0

50

100

150

200

38 39 40 41 42
stat

co
un

t

Simulation-Based Null Distribution

10 / 25

2/ Two-sample tests

Social pressure experiment

• Experimental study where each household for 2006 MI primary was
randomly assigned to one of 4 conditions:

• Control: no mailer
• Civic Duty: mailer saying voting is your civic duty.
• Hawthorne: a “we’re watching you” message.
• Neighbors: naming-and-shaming social pressure mailer.

• Outcome: whether household members voted or not.

• We’ll focus on Neighbors vs Control

• Randomized implies samples are independent

11 / 25

Neighbors mailer

12 / 25

Social pressure data
data(social, package = ”qss”)
social <- as_tibble(social)
social

A tibble: 305,866 x 6
sex yearofbirth primary2004 messages primar~1 hhsize
<chr> <int> <int> <chr> <int> <int>
1 male 1941 0 Civic Duty 0 2
2 female 1947 0 Civic Duty 0 2
3 male 1951 0 Hawthorne 1 3
4 female 1950 0 Hawthorne 1 3
5 female 1982 0 Hawthorne 1 3
6 male 1981 0 Control 0 3
7 female 1959 0 Control 1 3
8 male 1956 0 Control 1 3
9 female 1968 0 Control 0 2
10 male 1967 0 Control 0 2
... with 305,856 more rows, and abbreviated variable name
1: primary2006

13 / 25

Two-sample hypotheses

• Parameter: population ATE 𝜇𝘛 − 𝜇𝘊

• 𝜇𝘛 : Turnout rate in the population if everyone received treatment.
• 𝜇𝘊 : Turnout rate in the population if everyone received control.

• Goal: learn about the population difference in means

• Usual null hypothesis: no difference in population means (ATE = 0)

• Null: 𝘏𝟢 ∶ 𝜇𝘛 − 𝜇𝘊 = 𝟢
• Two-sided alternative: 𝘏𝟣 ∶ 𝜇𝘛 − 𝜇𝘊 ≠ 𝟢

• In words: are the differences in sample means just due to chance?

14 / 25

Permutation test

How do we generate draws of the difference in means under the null?
𝘏𝟢 ∶ 𝜇𝘛 − 𝜇𝘊 = 𝟢

If the voting distribution is the same in the treatment and control groups, we
could randomly swap who is labelled as treated and who is labelled as
control and it shouldn’t matter.

Permutation test: generate the null distribution by permuting the group
labels and see the resulting distribution of differences in proportions

15 / 25

Permuting the labels
social <- social |>
filter(messages %in% c(”Neighbors”, ”Control”))

social |>
mutate(messages_permute = sample(messages)) |>
select(primary2006, messages, messages_permute)

A tibble: 229,444 x 3
primary2006 messages messages_permute
<int> <chr> <chr>
1 0 Control Control
2 1 Control Control
3 1 Control Neighbors
4 0 Control Control
5 0 Control Control
6 1 Control Neighbors
7 0 Control Control
8 1 Control Control
9 1 Control Control
10 1 Control Control
... with 229,434 more rows

16 / 25

3/ Two-sample
permutation tests with
infer

Calculating the difference in proportion

infer functions with binary outcomes work best with factor variables:
social <- social |>
mutate(turnout = if_else(primary2006 == 1, ”Voted”, ”Didn't Vote”))

est_ate <- social |>
specify(turnout ~ messages, success = ”Voted”) |>
calculate(stat = ”diff in props”, order = c(”Neighbors”, ”Control”))

est_ate

Response: turnout (factor)
Explanatory: messages (factor)
A tibble: 1 x 1
stat
<dbl>
1 0.0813

17 / 25

Specifying the relationship of interest
infer functions with binary outcomes work best with factor variables:
social |>
specify(turnout ~ messages, success = ”Voted”)

Response: turnout (factor)
Explanatory: messages (factor)
A tibble: 229,444 x 2
turnout messages
<fct> <fct>
1 Didn't Vote Control
2 Voted Control
3 Voted Control
4 Didn't Vote Control
5 Didn't Vote Control
6 Voted Control
7 Didn't Vote Control
8 Voted Control
9 Voted Control
10 Voted Control
... with 229,434 more rows

18 / 25

Setting the hypotheses
The null for these two-sample tests is called ”independence” for the
infer package because the assumption is that the two variables are
statistically independent.
social |>
specify(turnout ~ messages, success = ”Voted”) |>
hypothesize(null = ”independence”)

Response: turnout (factor)
Explanatory: messages (factor)
Null Hypothesis: independence
A tibble: 229,444 x 2
turnout messages
<fct> <fct>
1 Didn't Vote Control
2 Voted Control
3 Voted Control
4 Didn't Vote Control
5 Didn't Vote Control
6 Voted Control
7 Didn't Vote Control
8 Voted Control
9 Voted Control
10 Voted Control
... with 229,434 more rows

19 / 25

Generating the permutations
We can tell infer to do our permutation test by using the argument type =
”permute” to generate():
social |>
specify(turnout ~ messages, success = ”Voted”) |>
hypothesize(null = ”independence”) |>
generate(reps = 1000, type = ”permute”)

Response: turnout (factor)
Explanatory: messages (factor)
Null Hypothesis: independence
A tibble: 229,444,000 x 3
Groups: replicate [1,000]
turnout messages replicate
<fct> <fct> <int>
1 Voted Control 1
2 Didn't Vote Control 1
3 Voted Control 1
4 Didn't Vote Control 1
5 Didn't Vote Control 1
6 Voted Control 1
7 Voted Control 1
8 Didn't Vote Control 1
9 Voted Control 1
10 Didn't Vote Control 1
... with 229,443,990 more rows

20 / 25

Calculating the diff in proportions in each sample

null_dist <- social |>
specify(turnout ~ messages, success = ”Voted”) |>
hypothesize(null = ”independence”) |>
generate(reps = 1000, type = ”permute”) |>
calculate(stat = ”diff in props”, order = c(”Neighbors”, ”Control”))

21 / 25

null_dist

Response: hours (numeric)
Null Hypothesis: point
A tibble: 1,000 x 2
replicate stat
<int> <dbl>
1 1 40.3
2 2 39.6
3 3 40.8
4 4 39.6
5 5 39.8
6 6 39.8
7 7 40.6
8 8 40.5
9 9 38.6
10 10 41.2
... with 990 more rows

22 / 25

Visualizing
null_dist |>
visualize()

0

50

100

150

200

38 39 40 41 42
stat

co
un

t
Simulation-Based Null Distribution

23 / 25

Calculating p-values

ate_pval <- null_dist |>
get_p_value(obs_stat = est_ate, direction = ”both”)

ate_pval

A tibble: 1 x 1
p_value
<dbl>
1 0

24 / 25

Visualizing p-values
null_dist |>
visualize() +
shade_p_value(obs_stat = est_ate, direction = ”both”)

0

50

100

150

200

0 10 20 30 40
stat

co
un

t

Simulation-Based Null Distribution

25 / 25

	Hypothesis testing using infer
	Two-sample tests
	Two-sample permutation tests with infer

