Gov 50: 20. Hypothesis testing

Matthew Blackwell

Harvard University

- 1. The lady tasting tea
- 2. Hypothesis tests
- 3. Hypothesis testing using infer

1/ The lady tasting tea

• You're skeptical that she can tell the difference, so you devise a test:

- You're skeptical that she can tell the difference, so you devise a test:
 - Prepare 8 cups of tea, 4 milk-first, 4 tea-first

- You're skeptical that she can tell the difference, so you devise a test:
 - Prepare 8 cups of tea, 4 milk-first, 4 tea-first
 - Present cups to friend in a random order

- You're skeptical that she can tell the difference, so you devise a test:
 - Prepare 8 cups of tea, 4 milk-first, 4 tea-first
 - Present cups to friend in a **random** order
 - Ask friend to pick which 4 of the 8 were milk-first.

Friend picks out all 4 milk-first cups correctly!

library(gov50data)

tea

##	#	A tibble: 8	x 2			
##		truth	guess			
##		<chr></chr>	<chr></chr>			
##	1	tea-first	tea-first			
##	2	milk-first	milk-first			
##	3	milk-first	milk-first			
##	4	tea-first	tea-first			
##	5	tea-first	tea-first			
##	6	milk-first	milk-first			
##	7	tea-first	tea-first			
##	8	milk-first	milk-first			

Thought experiment

Could she have been guessing at random? What would guessing look like?

set.seed(02138)
one_guess <- tea |>
 mutate(random_guess = sample(guess))
one_guess

##	#	A tibble: 8	3 x 3	
##		truth	guess	random_guess
##		<chr></chr>	<chr></chr>	<chr></chr>
##	1	tea-first	tea-first	milk-first
##	2	milk-first	milk-first	tea-first
##	3	milk-first	milk-first	tea-first
##	4	tea-first	tea-first	milk-first
##	5	tea-first	tea-first	tea-first
##	6	milk-first	milk-first	milk-first
##	7	tea-first	tea-first	tea-first
##	8	milk-first	milk-first	milk-first

4 correct in this random guess!

another_guess <- tea |>
 mutate(random_guess = sample(guess))
another_guess

A tibble: 8 x 3
truth guess random_guess
<chr> <chr> <chr> <chr> <chr>
1 tea-first tea-first tea-first
2 milk-first milk-first tea-first
3 milk-first milk-first milk-first
4 tea-first tea-first tea-first
5 tea-first tea-first milk-first
6 milk-first milk-first milk-first
7 tea-first tea-first tea-first
8 milk-first milk-first milk-first

6 correct in this random guess!

All possible guesses

We could enumerate all possible guesses. "Guessing" would mean choosing one of these at random:

##		Cup 1	Cup 2	Cup 3	Cup 4	Cup 5	Cup 6	Cup 7	Cup 8
##	1	milk	milk	milk	milk	tea	tea	tea	tea
##	2	milk	milk	milk	tea	milk	tea	tea	tea
##	3	milk	milk	tea	milk	milk	tea	tea	tea
##	4	milk	tea	milk	milk	milk	tea	tea	tea
##	5	tea	milk	milk	milk	milk	tea	tea	tea
##	6	milk	milk	milk	tea	tea	milk	tea	tea

[snip]

##		Cup 1	Cup 2	Cup 3	Cup 4	Cup 5	Cup 6	Cup 7	Cup 8
##	65	tea	tea	tea	milk	milk	tea	milk	milk
##	66	milk	tea	tea	tea	tea	milk	milk	milk
##	67	tea	milk	tea	tea	tea	milk	milk	milk
##	68	tea	tea	milk	tea	tea	milk	milk	milk
##	69	tea	tea	tea	milk	tea	milk	milk	milk
##	70	tea	tea	tea	tea	milk	milk	milk	milk

• Statistical thought experiment: how often would she get all 4 correct **if she were guessing randomly**?

- Statistical thought experiment: how often would she get all 4 correct **if she were guessing randomly**?
 - Only one way to choose all 4 correct cups.

- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.

- Statistical thought experiment: how often would she get all 4 correct **if she were guessing randomly**?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.
 - Choosing at random: picking each of these 70 with equal probability.

- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.
 - Choosing at random: picking each of these 70 with equal probability.
- Chances of guessing all 4 correct is $\frac{1}{70}\approx 0.014$ or 1.4%.

- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.
 - Choosing at random: picking each of these 70 with equal probability.
- Chances of guessing all 4 correct is $\frac{1}{70}\approx 0.014$ or 1.4%.
- \rightarrow the guessing hypothesis might be implausible.

- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.
 - Choosing at random: picking each of these 70 with equal probability.
- Chances of guessing all 4 correct is $\frac{1}{70}\approx 0.014$ or 1.4%.
- \rightarrow the guessing hypothesis might be implausible.
 - Impossible? No, because of random chance!

2/ Hypothesis tests

• Statistical hypothesis testing is a **thought experiment**.

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.

- Statistical hypothesis testing is a **thought experiment**.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?

- Statistical hypothesis testing is a **thought experiment**.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?
- Example 2:

- Statistical hypothesis testing is a **thought experiment**.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?
- Example 2:
 - Trump won 47.5% of the vote in the 2020 election.

- Statistical hypothesis testing is a **thought experiment**.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?
- Example 2:
 - Trump won 47.5% of the vote in the 2020 election.
 - Last YouGov poll of 1,363 likely voters said 44% planned to vote for Trump.

- Statistical hypothesis testing is a **thought experiment**.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?
- Example 2:
 - Trump won 47.5% of the vote in the 2020 election.
 - Last YouGov poll of 1,363 likely voters said 44% planned to vote for Trump.
 - Could the difference between the poll and the outcome be just due to random chance?

• Null hypothesis: Some statement about the population parameters.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.
 - An observed difference is real, not just due to chance.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.
 - An observed difference is real, not just due to chance.
 - Ex: polling for Trump is systematically wrong.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.
 - An observed difference is real, not just due to chance.
 - Ex: polling for Trump is systematically wrong.
 - Denoted H_1 or H_a

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.
 - An observed difference is real, not just due to chance.
 - Ex: polling for Trump is systematically wrong.
 - Denoted H_1 or H_a
- Probabilistic proof by contradiction: try to "disprove" the null.

• Are we polling the same population as the actual voters?

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?
 - True population mean of the surveys, *p*.

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?
 - True population mean of the surveys, *p*.
 - Null hypothesis: $H_0: p = 0.475$ (surveys drawing from same population)

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?
 - True population mean of the surveys, *p*.
 - Null hypothesis: $H_0: p = 0.475$ (surveys drawing from same population)
 - Alternative hypothesis: $H_1: p \neq 0.475$

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?
 - True population mean of the surveys, p.
 - Null hypothesis: $H_0: p = 0.475$ (surveys drawing from same population)
 - Alternative hypothesis: $H_1: p \neq 0.475$
- Data: poll has $\overline{X} = 0.44$ with n = 1363.

• If the null were true, what should the distribution of the data be?

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondent *i* will vote for Trump.

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondent *i* will vote for Trump.
 - Under null, X_i is a coin flip with probability p = 0.475 of landing on "Trump".

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondent *i* will vote for Trump.
 - Under null, X_i is a coin flip with probability p = 0.475 of landing on "Trump".
 - $\sum_{i=1}^{n} X_i$ is the number in sample that will vote for Trump.

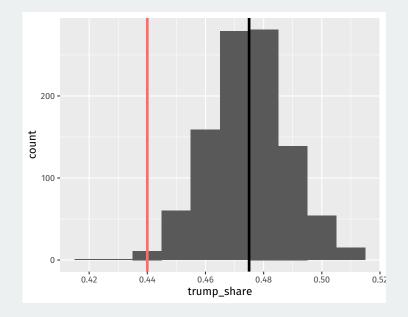
- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondent *i* will vote for Trump.
 - Under null, X_i is a coin flip with probability p = 0.475 of landing on "Trump".
 - $\sum_{i=1}^{n} X_i$ is the number in sample that will vote for Trump.
- We can simulate sums of coin flips using a function called rbinom()

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondent *i* will vote for Trump.
 - Under null, X_i is a coin flip with probability p = 0.475 of landing on "Trump".
 - $\sum_{i=1}^{n} X_i$ is the number in sample that will vote for Trump.
- We can simulate sums of coin flips using a function called rbinom()
- Compare the distribution of proportions under the null to the observed proportion.

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondent *i* will vote for Trump.
 - Under null, X_i is a coin flip with probability p = 0.475 of landing on "Trump".
 - $\sum_{i=1}^{n} X_i$ is the number in sample that will vote for Trump.
- We can simulate sums of coin flips using a function called rbinom()
- Compare the distribution of proportions under the null to the observed proportion.

```
null_dist <- tibble(
   trump_share = rbinom(n = 1000, size = 1363, prob = 0.475) / 1363
)
ggplot(null_dist, aes(x = trump_share)) +
   geom_histogram(binwidth = 0.01) +
   geom_vline(xintercept = 0.44, color = "indianred1", size = 1.25) +
   geom_vline(xintercept = 0.475, size = 1.25)</pre>
```

Simulations of the reference distribution



p-value

The **p-value** is the probability of observing data as or more extreme as our data under the null.

• If the null is true, how often would we expect polling errors this big?

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:
 - Observed error of 0.44 0.475 = -0.035 under the null.

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually two-sided:
 - Observed error of 0.44 0.475 = -0.035 under the null.
 - p-value is probability of sample proportions being less than 0.44 **plus**

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:
 - Observed error of 0.44 0.475 = -0.035 under the null.
 - p-value is probability of sample proportions being less than 0.44 **plus**
 - Probability of sample proportions being greater than 0.475 + 0.035 = 0.51.

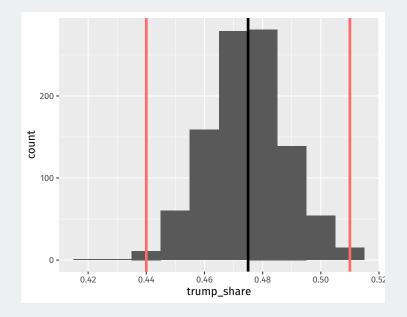
The **p-value** is the probability of observing data as or more extreme as our data under the null.

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:
 - Observed error of 0.44 0.475 = -0.035 under the null.
 - p-value is probability of sample proportions being less than 0.44 **plus**
 - Probability of sample proportions being greater than 0.475 + 0.035 = 0.51.

mean(null_dist\$trump_share < 0.44) + mean(null_dist\$trump_share > 0.51)

[1] 0.01

Two-sided p-value



• Sometimes our hypothesis is directional.

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - *H*₁ : *p* < 0.475

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - *H*₁ : *p* < 0.475
- Makes the p-value one-sided:

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - *H*₁ : *p* < 0.475
- Makes the p-value one-sided:
 - What's the probability of a random sample underestimating Trump support by as much as we see in the sample?

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - $H_1: p < 0.475$
- Makes the p-value one-sided:
 - What's the probability of a random sample underestimating Trump support by as much as we see in the sample?
 - Always smaller than a two-sided p-value.

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - *H*₁ : *p* < 0.475
- Makes the p-value one-sided:
 - What's the probability of a random sample underestimating Trump support by as much as we see in the sample?
 - Always smaller than a two-sided p-value.

mean(null_dist\$trump_share < 0.44)</pre>

• Tests usually end with a decision to reject the null or not.

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** *α*: the threshold for a test.

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** *α*: the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** *α*: the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** α : the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** α : the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:
 - $p \ge 0.1$ "not statistically significant"

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** *α*: the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:
 - $p \ge 0.1$ "not statistically significant"
 - *p* < 0.05 "statistically significant"

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** *α*: the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:
 - $p \ge 0.1$ "not statistically significant"
 - p < 0.05 "statistically significant"
 - *p* < 0.01 "highly significant"

• A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - * ightarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H ₀ True	H ₀ False	
Retain H ₀	Awesome!	Type II error	
Reject H ₀	Type I error	Good stuff!	

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H ₀ True	H ₀ False	
Retain H ₀	Awesome!	Type II error	
Reject H ₀	Type I error	Good stuff!	

• Type I error because it's the worst

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H ₀ True	H ₀ False	
Retain H ₀	Awesome!	Type II error	
Reject H ₀	Type I error	Good stuff!	

- Type I error because it's the worst
 - "Convicting" an innocent null hypothesis

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H ₀ True	H ₀ False	
Retain H ₀	Awesome!	Type II error	
Reject H ₀	Type I error	Good stuff!	

- Type I error because it's the worst
 - "Convicting" an innocent null hypothesis
- Type II error less serious

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H ₀ True	H ₀ False	
Retain H ₀	Awesome!	Type II error	
Reject H ₀	Type I error	Good stuff!	

- Type I error because it's the worst
 - "Convicting" an innocent null hypothesis
- Type II error less serious
 - · Missed out on an awesome finding

3/ Hypothesis testing using infer

GSS data from infer

library(infer)

gss

A tibble: 500 x 11

##		year	age	sex	college	partyid	hompop	hours	income
##		<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<ord></ord>
##	1	2014	36	male	degree	ind	3	50	\$25000~
##	2	1994	34	female	no degree	rep	4	31	\$20000~
##	3	1998	24	male	degree	ind	1	40	\$25000~
##	4	1996	42	male	no degree	ind	4	40	\$25000~
##	5	1994	31	male	degree	rep	2	40	\$25000~
##	6	1996	32	female	no degree	rep	4	53	\$25000~
##	7	1990	48	female	no degree	dem	2	32	\$25000~
##	8	2016	36	female	degree	ind	1	20	\$25000~
##	9	2000	30	female	degree	rep	5	40	\$25000~
##	10	1998	33	female	no degree	dem	2	40	\$15000~
##	# .	wit	ch 490	more ro	ows, and 3	more vai	riables	:	
##	## # class <fct>, finrela <fct>, weight <dbl></dbl></fct></fct>								

What is the average hours worked?

dplyr way:

gss > summarize(mean(hours))
<pre>## # A tibble: 1 x 1 ## `mean(hours)` ##</pre>
infer way:
observed_mean <- gss > specify(response = hours) > calculate(stat = "mean") observed_mean

Response: hours (numeric)
A tibble: 1 x 1
stat
<dbl>
1 41.4

Could we get a mean this different from 40 hours if that was the true population average of hours worked?

Could we get a mean this different from 40 hours if that was the true population average of hours worked?

Null and alternative:

 $H_0: \mu_{hours} = 40$ $H_1: \mu_{hours} \neq 40$

Could we get a mean this different from 40 hours if that was the true population average of hours worked?

Null and alternative:

 $H_0: \mu_{\text{hours}} = 40$ $H_1: \mu_{\text{hours}} \neq 40$

How do we perform this test using infer? The bootstrap!

Specifying the hypotheses

```
gss |>
specify(response = hours) |>
hypothesize(null = "point", mu = 40)
```

##	Respo	nse: I	nours	s (nur	meric)
##	Null	Hypoth	nesi	s: poi	int
##	# A t	ibble	: 500	9 x 1	
##	ho	urs			
##	<d< td=""><td>bl></td><td></td><td></td><td></td></d<>	bl>			
##	1	50			
##	2	31			
##	3	40			
##	4	40			
##	5	40			
##	6	53			
##	7	32			
##	8	20			
##	9	40			
##	10	40			
##	#	with	490	more	rows

Generating the null distribution

We can use the bootstrap to determine how much variation there will be around 40 in the null distribution.

```
null_dist <- gss |>
   specify(response = hours) |>
   hypothesize(null = "point", mu = 40) |>
   generate(reps = 1000, type = "bootstrap") |>
   calculate(stat = "mean")
null_dist
```

```
## Response: hours (numeric)
## Null Hypothesis: point
  # A tibble: 1,000 x 2
##
## replicate stat
        <int> <dbl>
##
## 1
           1 40.3
## 2
           2 39.8
## 3
           3 40.0
## 4
          4 39.2
## 5
          5 40.3
       6 40.2
## 6
##
   7
           7 40.4
```

We can visualize our bootstrapped null distribution and the p-value as a shaded region:

