
Gov 50: 18. The Bootstrap

Matthew Blackwell

Harvard University

- 1. Resampling from our sample
- 2. Confidence intervals
- 3. Calculating confidence intervals

1/ Resampling from our sample

Can we approximate the sampling distribution with our single sample?

American National Election Survey data

Name	Description
state	State of respondent
district	Congressional district of respondent
pid7	Party ID (1=Strong D, 7=Strong R)
pres_vote	Self reported vote in 2020
sci_therm	0-100 therm score for scientists
rural_therm	0-100 therm score for rurual Americans
favor_voter_id	1 if respondent thinks voter ID should be required
envir_doing_more	1 if respondent thinks gov't should be doing more about climate change

ANES data

library(gov50data)

anes

##	# /	A tibb	le: 5,162	x 8				
##		state	district	pid7	pres_vote	<pre>sci_therm</pre>	rural_~1	favor~2
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	ID	2	4	Other	70	60	1
##	2	VA	2	3	Biden	100	75	Θ
##	3	CO	4	4	Trump	60	90	1
##	4	ТΧ	5	3	Biden	85	85	1
##	5	WI	6	6	Trump	85	70	1
##	6	CA	40	2	Biden	50	50	1
##	7	WI	5	2	Biden	100	70	1
##	8	OR	4	7	Trump	70	50	Θ
##	9	MA	5	3	Biden	80	70	Θ
##	10	NV	3	1	Biden	85	40	Θ
##	## # with 5,152 more rows, 1 more variable:							
##	<pre>## # envir_doing_more <dbl>, and abbreviated variable names</dbl></pre>							
##	<pre>## # 1: rural_therm, 2: favor_voter_id</pre>							

What is the average thermemeter score for scientists?

```
anes |>
   summarize(mean(sci_therm))
```

```
## # A tibble: 1 x 1
## `mean(sci_therm)`
## <dbl>
## 1 80.6
```

What is the average thermemeter score for scientists?

```
anes |>
summarize(mean(sci_therm))
```

What is the sampling distribution of this average? We only have this 1 draw!

Population: all US adults.

Population parameter: average feeling thermometer score for scientists among all US adults.

Sample: (complicated) random sample of all US adults.

Sample statistic/point estimate: sample average of thermometer scores.

Population: all US adults.

Population parameter: average feeling thermometer score for scientists among all US adults.

Sample: (complicated) random sample of all US adults.

Sample statistic/point estimate: sample average of thermometer scores.

Roughly how far our point estimate is likely to be from the truth?

Mimic sampling from the population by **resampling** many times from the sample itself.

Bootstrap resampling done **with replacement** (same row can appear more than once)

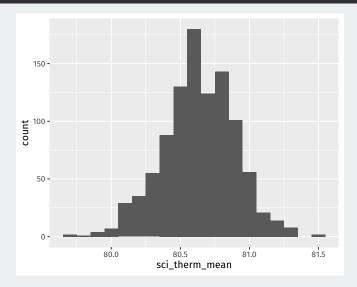
One bootstrap resample

boot_1 <- anes |>
 slice_sample(prop = 1, replace = TRUE)
boot_1

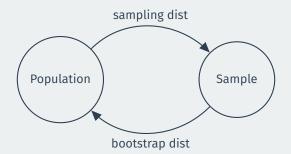
A tibble: 5,162 x 8

##		state	district	pid7	pres_vote	sci_therm	rural_~1	favor~2
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	IL	17	5	Trump	60	85	1
##	2	CA	33	2	Biden	100	50	Θ
##	3	FL	14	1	Biden	100	100	1
##	4	IL	3	7	Trump	80	90	1
##	5	SC	7	1	Biden	95	70	Θ
##	6	IA	2	6	Trump	80	90	Θ
##	7	MS	4	5	Other	100	100	1
##	8	FL	1	5	Trump	70	80	1
##	9	KY	1	7	Trump	60	85	1
##	10	GA	9	6	Trump	70	85	1
##	## # with 5,152 more rows, 1 more variable:							
##	<pre>## # envir_doing_more <dbl>, and abbreviated variable names</dbl></pre>							
##	# # 1: rural_therm, 2: favor_voter_id							

Sample mean in the bootstrap sample

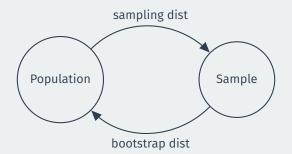

```
boot_1 |>
   summarize(mean(sci_therm))
```

```
library(infer)
bootstrap_dist <- anes |>
    rep_slice_sample(prop = 1, reps = 1000, replace = TRUE) |>
    group_by(replicate) |>
    summarize(sci_therm_mean = mean(sci_therm))
bootstrap_dist
```


##	# A t	ibble: 1,0	000 x 2			
##	replicate sci_therm_mean					
##		<int></int>	<dbl></dbl>			
##	1	1	80.2			
##	2	2	81.1			
##	3	3	80.8			
##	4	4	80.9			
##	5	5	5 80.4			
##	6	6	6 80.9			
##	7	7	80.5			
##	8	8	80.7			
##	9	9	80.4			
##	10	10	80.8			
##	#	with 990	more rows			

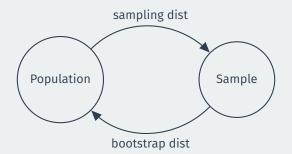
Visualizing the bootstrap distribution

bootstrap_dist |>
ggplot(aes(x = sci_therm_mean)) + geom_histogram(binwidth = 0.1)



Bootstrap distribution

Bootstrap distribution **approximates** the sampling distribution of the estimator.


Bootstrap distribution

Bootstrap distribution **approximates** the sampling distribution of the estimator.

Both should have a **similar shape and spread** if sampling from the distribution ≈ bootstrap resampling.

Bootstrap distribution

Bootstrap distribution **approximates** the sampling distribution of the estimator.

Both should have a **similar shape and spread** if sampling from the distribution ≈ bootstrap resampling.

Approximation gets better as sample gets bigger.

Comparing to the point estimate

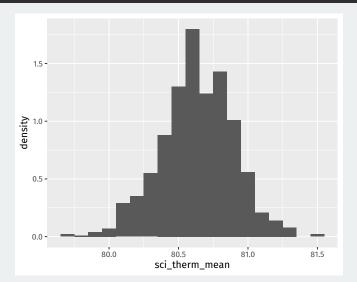
Given the sampling, not surprising that bootstrap distribution is centered on the point estimate:

bootstrap_dist |>
 summarize(mean(sci_therm_mean))

anes |>

summarize(mean(sci_therm))

What is a confidence interval?



Point estimate: best single guess about the population parameter. Unlikely to be exactly correct.

Confidence interval: a range of plausible values of the population parameter.

Where is most of the bootstrap distribution?

bootstrap_dist |>
ggplot(aes(x = sci_therm_mean)) +
geom_histogram(aes(y= ..density..), binwidth = 0.1)

• Each sample gives a different CI or toss of the ring.

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.
 - We don't know if the CI for our sample contains the truth!

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.
 - We don't know if the CI for our sample contains the truth!
- **Confidence level:** percent of the time our CI will contain the population parameter.

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.
 - We don't know if the CI for our sample contains the truth!
- **Confidence level:** percent of the time our CI will contain the population parameter.
 - Number of ring tosses that will hit the target.

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.
 - We don't know if the CI for our sample contains the truth!
- **Confidence level:** percent of the time our CI will contain the population parameter.
 - Number of ring tosses that will hit the target.
 - We get to choose, but typical values are 90%, 95%, and 99%

Confidence intervals as occasional liars

The **confidence level** of a CI determine how often the CI will be wrong.

A 95% confidence interval will:

• Tell you the truth in 95% of repeated samples (contain the population parameter 95% of the time)

A 95% confidence interval will:

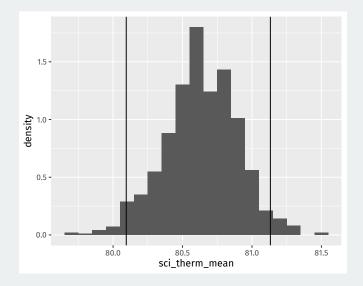
- Tell you the truth in 95% of repeated samples (contain the population parameter 95% of the time)
- Lie to you in 5% of repeated sample (not contain the population parameter 5% of the time)

A 95% confidence interval will:

- Tell you the truth in 95% of repeated samples (contain the population parameter 95% of the time)
- Lie to you in 5% of repeated sample (not contain the population parameter 5% of the time)

A 95% confidence interval will:

- Tell you the truth in 95% of repeated samples (contain the population parameter 95% of the time)
- Lie to you in 5% of repeated sample (not contain the population parameter 5% of the time)

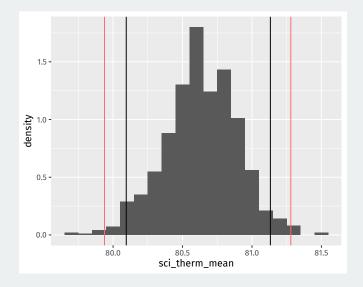

Can you tell if your particular confidence interval is telling the truth? No!

Percentile method: find the middle 95% of the bootstrap distribution.

We can do this by finding the points that the 2.5th percentile and the 97.5th percentile.

80.1 81.1

Visualizing the CI


What happens if we want the CI to be right more often? Will the width of a 99% confidence interval be wider or narrower?

For 99% CI we need to find the middle 99% of the bootstrap distribution.

We can do this by finding the points that the 0.5th percentile and the 99.5th percentile.

0.5% 99.5% ## 79.9 81.3

Visualizing the CIs

3/ Calculating confidence intervals

Possible to use quantile to calculate CIs, but infer package is a more unified framework for CIs and hypothesis tests.

We'll use a dplyr-like approach of chained calls.

Step 1: define an outcome of interest

Start with defining the variable of interest:

```
anes |>
    specify(response = sci_therm)
```

##	Respo	nse: s	ci_the	erm (numeric			
##	# A t	2 x 1						
##	sci_therm							
##	<dbl></dbl>							
##	1							
##	2							
##	3 60							
##	4 85							
##	5 85							
##	6 50							
##	7							
##	8 70							
##	9							
##	10							
##	#	with	5,152	more	rows			

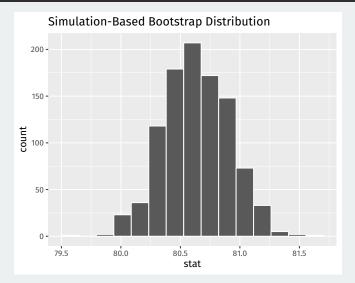
Next infer can generate bootstraps with the generate() function (similar to rep_slice_sample()):

```
anes |>
   specify(response = sci_therm) |>
   generate(reps = 1000, type = "bootstrap")
```

				<i>.</i>
##	Respor	ise: s	sci_thern	n (numeric)
##	# A t	ibble:	5,162,0	000 x 2
##	# Grou	ups:	replica	ate [1,000]
##	rep	olicat	e sci_th	nerm
##		<int< td=""><td>:> <0</td><td>lbl></td></int<>	:> <0	lbl>
##	1		1	70
##	2		1	85
##	3		1	100
##	4		1	50
##	5		1	85
##	6		1	100
##	7		1	100
##	8		1	80
##	9		1	100
##	10		1	100
##	#	with	5,161,99	0 more rows

Use calculate() to do the group_by(replicate) and summarize commands in one:

```
boot_dist_infer <- anes |>
   specify(response = sci_therm) |>
   generate(reps = 1000, type = "bootstrap") |>
   calculate(stat = "mean")
```

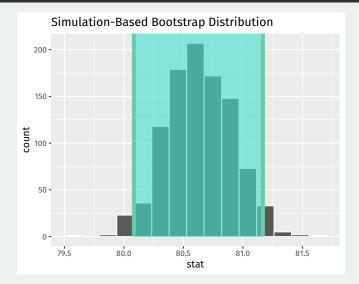

boot_dist_infer

##	Respo	nse: s	ci_	therm	(numeric)
##	# A t	ibble:	1,	000 x	2
##	re	plicat	e	stat	
##		<int< td=""><td>> <</td><td>dbl></td><td></td></int<>	> <	dbl>	
##	1		1	80.9	
##	2		2	80.8	
##	3		3	80.9	
##	4		4	80.8	
##	5		5	80.8	
##	6		6	80.6	
##	7		7	81.0	
##	8		8	80.3	
##	9		9	80.3	
##	10	1	0	80.4	
##	#	with	990	more	rows

Step 3(b): visualize the boostrap distribution

infer also has a shortcut for plotting called visualize():

visualize(boot_dist_infer)


Finally we can calculate the CI using the percentile method with get_confidence_interval():

```
perc_ci_95 <- boot_dist_infer |>
    get_confidence_interval(level = 0.95, type = "percentile")
perc_ci_95
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 80.1 81.2
```

Step 4(b): visualize CIs

visualize(boot_dist_infer) + shade_confidence_interval(endpoints = perc_ci_95)

