Gov 50: 15. Multiple Regression and Interpretation

Matthew Blackwell

Harvard University

- 1. Multiple regression
- 2. Categorical independent variables

1/ Multiple regression

Multiple predictors

What if we want to predict Y as a function of many variables?

```
seat_change<sub>i</sub> = \alpha + \beta_1 approval<sub>i</sub> + \beta_2rdi_change<sub>i</sub> + \epsilon_i
```

Why?

- Better predictions (at least in-sample).
- Better interpretation as **ceteris paribus** relationships:
 - β_1 is the relationship between approval and seat_change holding rdi_change constant.
 - Statistical control in a cross-sectional study.

Multiple regression in R

mult.fit

##						
##	Call:					
##	<pre>lm(formula =</pre>	seat_change ~	approval +	rdi_change,	data =	midterms)
##						
##	Coefficients	:				
##	(Intercept)	approval	rdi_change			
##	-117.23	1.53	3.22			

- $\hat{\alpha} =$ -117.2: average seat change president has 0% approval and no change in income levels.
- $\hat{\beta}_1 =$ 1.53: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**
- $\hat{\beta}_2 = 3.217$: average increase in seat change for each additional percentage point increase of RDI, **holding approval fixed**

Least squares with multiple regression

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$Y_i - \widehat{Y}_i = \text{seat_change}_i - \widehat{\alpha} - \widehat{\beta}_1 \text{approval}_i - \widehat{\beta}_2 \text{rdi_change}_i$$

• Find the coefficients that minimizes the sum of the squared residuals:

$$\mathsf{SSR} = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = (Y_i - \hat{\alpha} - \hat{\beta}_1 X_{i1} - \hat{\beta}_2 X_{i2})^2$$

Model fit with multiple predictors

- R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R² goes down!

```
library(broom)
fit.app <- lm(seat_change ~ approval, data = midterms)
glance(fit.app) |>
   select(r.squared, adj.r.squared, sigma)
```

A tibble: 1 x 3
r.squared adj.r.squared sigma
<dbl> <dbl> <dbl>
1 0.450 0.418 16.9

glance(mult.fit) |>
 select(r.squared, adj.r.squared, sigma)

```
## # A tibble: 1 x 3
## r.squared adj.r.squared sigma
## <dbl> <dbl> <dbl>
## 1 0.468 0.397 16.7
```

We could plug in values into the equation, but R can do this for us. The {modelr} package gives some functions that allow us to predictions in a tidy way:

Let's use add_predictions() to predict the 2022 results

```
library(modelr)
midterms |>
filter(year == 2022) |>
add_predictions(mult.fit)
```

The gather_predictions() will return one row for each model passed to it with the prediction for that model:

midterms |>
 filter(year == 2022) |>
 gather_predictions(fit.app, mult.fit)

```
## # A tibble: 2 x 8
## model year presi~1 party appro~2 seat_~3 rdi_c~4 pred
## <chr> <dbl> <chr> <dbl> <chr> <dbl> = ...
## 1 fit.app 2022 Biden D 42 NA -0.003 -36.9
## 2 mult.fit 2022 Biden D 42 NA -0.003 -53.2
## # ... with abbreviated variable names 1: president,
## 2: approval, 3: seat_change, 4: rdi_change
```

What about predicted values not in data?

tibble(approval = c(50, 75), rdi_change = 0) |>
gather_predictions(fit.app, mult.fit)

##	#	A tibble	: 4 x 4		
##		model	approval	rdi_change	pred
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	fit.app	50	Θ	-25.6
##	2	fit.app	75	Θ	9.92
##	3	mult.fit	50	Θ	-40.9
##	4	mult.fit	75	Θ	-2.79

We can also get predicted values from the augment() function using the newdata argument:

newdata <- tibble(approval = c(50, 75), rdi_change = 0)
augment(mult.fit, newdata = newdata)</pre>

```
## # A tibble: 2 x 3
## approval rdi_change .fitted
## <dbl> <dbl> <dbl>
## 1 50 0 -40.9
## 2 75 0 -2.79
```

2/ Categorical independent variables

Political effects of gov't programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
 - Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.
- Do these programs have political effects?
 - Program had support from most parties.
 - Was implemented in a nonpartisan fashion.
 - Would the incumbent presidential party be rewarded?

The data

- Randomized roll-out of the CCT program:
 - treatment: receive CCT 21 months before 2000 election
 - control: receive CCT 6 months before 2000 election
- Does having CCT longer mobilize voters for incumbent PRI party?

Name	Description
treatment	early Progresa (1) or late Progresa (0)
pri2000s	PRI votes in the 2000 election as a share of adults
	in precinct
t2000	turnout in the 2000 election as share of adults in
	precinct

library(qss)
<pre>data("progresa", package = "qss")</pre>
cct <- as_tibble(progresa) >
<pre>select(treatment, pri2000s, t2000)</pre>
cct

##	# A	tibble:	417	′ x 3	
##	1	treatmen	t pr	i2000	s t2000
##		<int< td=""><td>></td><td><dbl:< td=""><td>> <dbl></dbl></td></dbl:<></td></int<>	>	<dbl:< td=""><td>> <dbl></dbl></td></dbl:<>	> <dbl></dbl>
##	1		1	40.8	8 55.8
##	2		1	22.4	4 31.2
##	3		1	38.9	9 47.0
##	4		1	31.2	2 45.0
##	5		0	76.9	9 100
##	6		0	23.9	9 37.4
##	7		1	47.3	64.9
##	8		1	21.4	4 58.1
##	9		1	56.	5 71.3
##	10		1	36.0	5 51.2
##	# .	with	407	more :	rows

Difference in means estimates

Does CCT affect turnout?

```
cct |> group_by(treatment) |>
   summarize(t2000 = mean(t2000)) |>
   pivot_wider(names_from = treatment, values_from = t2000) |>
   mutate(ATE = `1` - `0`)
```

```
## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 63.8 68.1 4.27
```

Does CCT affect PRI (incumbent) votes?

```
cct |> group_by(treatment) |>
    summarize(pri2000s = mean(pri2000s)) |>
    pivot_wider(names_from = treatment, values_from = pri2000s) |>
    mutate(ATE = `1` - `0`)
```

```
## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 34.5 38.1 3.62
```

 $Y_i = \alpha + \beta X_i + \varepsilon_i$

- When independent variable X_i is **binary**:
 - Intercept $\hat{\alpha}$ is the average outcome in the X = 0 group.
 - Slope $\hat{\beta}$ is the difference-in-means of Y between X = 1 group and X = 0 group.

$$\hat{oldsymbol{eta}} = \overline{Y}_{ ext{treated}} - \overline{Y}_{ ext{control}}$$

• If there are other independent variables, this becomes the difference-in-means controlling for those covariates.

Linear regression for experiments

• Under randomization, we can estimate the ATE with regression:

```
cct |> group_by(treatment) |>
   summarize(pri2000s = mean(pri2000s)) |>
   pivot_wider(names_from = treatment, values_from = pri2000s) |>
   mutate(ATE = `1` - `0`)
```

```
## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 34.5 38.1 3.62
```

lm(pri2000s ~ treatment, data = cct) |> coef()

```
## (Intercept) treatment
## 34.49 3.62
```

Categorical variables in regression

- We often have **categorical variables**:
 - Race/ethnicity: white, Black, Latino, Asian.
 - Partisanship: Democrat, Republican, Independent
- Strategy for including in a regression: create a series of binary variables

Unit	Party	Democrat	Republican	Independent
1	Democrat	1	0	0
2	Democrat	1	0	0
3	Independent	0	0	1
4	Republican	0	1	0
÷	:	:	:	:

• Then include **all but one** of these binary variables:

turnout_i = $\alpha + \beta_1$ Republican_i + β_2 Independent_i + ε_i

turnout_i = $\alpha + \beta_1$ Republican_i + β_2 Independent_i + ε_i

- $\hat{\alpha}$: average outcome in the **omitted group/baseline** (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the baseline.
 - \hat{eta}_1 : average difference in turnout between Republicans and Democrats
 - + $\hat{m{eta}}_2$: average difference in turnout between Independents and Democrats

CCES data

library(gov50data) cces_2020

##	## # A tibble: 51,551 x 6						
##	gen	der race	educ		pid3	turno~1	pres_~2
##	<fc< td=""><td>t> <fct< td=""><td><pre><fct></fct></pre></td><td></td><td><fct></fct></td><td><dbl></dbl></td><td><fct></fct></td></fct<></td></fc<>	t> <fct< td=""><td><pre><fct></fct></pre></td><td></td><td><fct></fct></td><td><dbl></dbl></td><td><fct></fct></td></fct<>	<pre><fct></fct></pre>		<fct></fct>	<dbl></dbl>	<fct></fct>
##	1 Mal	e Whit	e 2-year		Republ~	1	Donald~
##	2 Fem	ale Whit	e Post-grad		Democr~	NA	<na></na>
##	3 Fem	ale Whit	e 4-year		Indepe~	1	Joe Bi~
##	4 Fem	ale Whit	e 4-year		Democr~	1	Joe Bi~
##	5 Mal	e Whit	e 4-year		Indepe~	1	Other
##	6 Mal	e Whit	e Some colleg	ge	Republ~	1	Donald~
##	7 Mal	e Blac	<pre>Some colleg</pre>	ge	Not su~	NA	<na></na>
##	8 Fem	ale Whit	e Some colleg	ge	Indepe~	1	Donald~
##	9 Fem	ale Whit	e High school	graduate	Republ~	1	Donald~
##	10 Fem	ale Whit	e 4-year		Democr~	1	Joe Bi~
##	# # with 51,541 more rows, and abbreviated variable names						
##	<pre>## # 1: turnout_self, 2: pres_vote</pre>						

Categorical variables in the CCES data

turnout_pred <- lm(turnout_self ~ pid3, data = cces_2020)
turnout_pred</pre>

```
##
```

```
## Call:
##
  lm(formula = turnout self ~ pid3, data = cces 2020)
##
  Coefficients:
##
##
       (Intercept)
                     pid3Republican pid3Independent
##
            0.9635
                            -0.0103
                                             -0.0394
##
        pid30ther
                       pid3Not sure
##
          -0.0066
                           -0.3331
```

What R does internally with factor variables in lm

cces_2020 |> drop_na(turnout_self, pid3) |> select(pid3) |> pull() |> head()

[1] Republican Independent Democrat Independent

[5] Republican Independent

7 Levels: Democrat Republican Independent ... not asked

model.matrix(turnout_pred) |> head()

##		(Intercept)	pid3Republican	pid3Independent	pid30ther
##	1	1	1	Θ	Θ
##	3	1	Θ	1	Θ
##	4	1	Θ	Θ	Θ
##	5	1	Θ	1	Θ
##	6	1	1	Θ	Θ
##	8	1	Θ	1	Θ
##		pid3Not sur	e		
##	1		Э		
##	3		Э		
##	4		Э		
##	5		Э		
##	6		9		