Gov 50: 15. Multiple Regression and Interpretation

Matthew Blackwell

Harvard University

Roadmap

1. Multiple regression
2. Categorical independent variables

1/ Multiple regression

Multiple predictors

What if we want to predict Y as a function of many variables?

$$
\text { seat_change }_{i}=\alpha+\beta_{1} \text { approval }_{i}+\beta_{2} \text { rdi_change }_{i}+\epsilon_{i}
$$

Multiple predictors

What if we want to predict Y as a function of many variables?

$$
\text { seat_change }_{i}=\alpha+\beta_{1} \text { approval }_{i}+\beta_{2} \text { rdi_change }_{i}+\epsilon_{i}
$$

Why?

- Better predictions (at least in-sample).

Multiple predictors

What if we want to predict Y as a function of many variables?

$$
\text { seat_change }_{i}=\alpha+\beta_{1} \text { approval }_{i}+\beta_{2} \text { rdi_change }_{i}+\epsilon_{i}
$$

Why?

- Better predictions (at least in-sample).
- Better interpretation as ceteris paribus relationships:

Multiple predictors

What if we want to predict Y as a function of many variables?

$$
\text { seat_change }_{i}=\alpha+\beta_{1} \text { approval }_{i}+\beta_{2} \text { rdi_change }_{i}+\epsilon_{i}
$$

Why?

- Better predictions (at least in-sample).
- Better interpretation as ceteris paribus relationships:
- β_{1} is the relationship between approval and seat_change holding rdi_change constant.

Multiple predictors

What if we want to predict Y as a function of many variables?

$$
\text { seat_change }_{i}=\alpha+\beta_{1} \text { approval }_{i}+\beta_{2} \text { rdi_change }_{i}+\epsilon_{i}
$$

Why?

- Better predictions (at least in-sample).
- Better interpretation as ceteris paribus relationships:
- β_{1} is the relationship between approval and seat_change holding rdi_change constant.
- Statistical control in a cross-sectional study.

Multiple regression in \mathbf{R}

```
mult.fit <- lm(seat_change ~ approval + rdi_change,
    data = midterms)
mult.fit
```


Multiple regression in \mathbf{R}

```
mult.fit <- lm(seat_change ~ approval + rdi_change,
    data = midterms)
mult.fit
```

```
##
## Call:
## lm(formula = seat_change ~ approval + rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi_change
## -117.23 1.53 3.22
```


Multiple regression in \mathbf{R}

```
mult.fit <- lm(seat_change ~ approval + rdi_change,
    data = midterms)
mult.fit
```

```
##
## Call:
## lm(formula = seat_change ~ approval + rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi_change
## -117.23 1.53 3.22
```

- $\hat{\alpha}=-117.2$: average seat change president has 0\% approval and no change in income levels.

Multiple regression in \mathbf{R}

```
mult.fit <- lm(seat_change ~ approval + rdi_change,
    data = midterms)
mult.fit
```

```
##
## Call:
## lm(formula = seat_change ~ approval + rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi_change
## -117.23 1.53 3.22
```

- $\hat{\alpha}=-117.2$: average seat change president has 0\% approval and no change in income levels.
- $\hat{\beta}_{1}=1.53$: average increase in seat change for additional percentage point of approval, holding RDI change fixed

Multiple regression in R

```
mult.fit <- lm(seat_change ~ approval + rdi_change,
    data = midterms)
mult.fit
```

\#\#
\#\# Call:
\#\# lm(formula = seat_change \sim approval + rdi_change, data $=$ midterms)
\#\#
\#\# Coefficients:
\#\# (Intercept) approval rdi_change
$\begin{array}{llll}\text { \#\# } & \text {-117.23 } & 1.53 & 3.22\end{array}$

- $\hat{\alpha}=-117.2$: average seat change president has 0\% approval and no change in income levels.
- $\hat{\beta}_{1}=1.53$: average increase in seat change for additional percentage point of approval, holding RDI change fixed
- $\hat{\beta}_{2}=3.217:$ average increase in seat change for each additional percentage point increase of RDI, holding approval fixed

Least squares with multiple regression

- How do we estimate the coefficients?

Least squares with multiple regression

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!

Least squares with multiple regression

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$
Y_{i}-\widehat{Y}_{i}=\text { seat_change }_{i}-\hat{\alpha}-\hat{\beta}_{1} \text { approval }_{i}-\hat{\beta}_{2} \text { rdi_change }_{i}
$$

Least squares with multiple regression

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$
Y_{i}-\widehat{Y}_{i}=\text { seat_change }_{i}-\hat{\alpha}-\hat{\beta}_{1} \text { approval }_{i}-\hat{\beta}_{2} \text { rdi_change }_{i}
$$

- Find the coefficients that minimizes the sum of the squared residuals:

$$
\mathrm{SSR}=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\left(Y_{i}-\hat{\alpha}-\hat{\beta}_{1} X_{i 1}-\hat{\beta}_{2} X_{i 2}\right)^{2}
$$

Model fit with multiple predictors

- R^{2} mechanically increases when you add a variables to the regression.

Model fit with multiple predictors

- R^{2} mechanically increases when you add a variables to the regression.
- But this could be overfitting!!

Model fit with multiple predictors

- R^{2} mechanically increases when you add a variables to the regression.
- But this could be overfitting!!
- Solution: penalize regression models with more variables.

Model fit with multiple predictors

- R^{2} mechanically increases when you add a variables to the regression.
- But this could be overfitting!!
- Solution: penalize regression models with more variables.
- Occam's razor: simpler models are preferred

Model fit with multiple predictors

- R^{2} mechanically increases when you add a variables to the regression.
- But this could be overfitting!!
- Solution: penalize regression models with more variables.
- Occam's razor: simpler models are preferred
- Adjusted R^{2} : lowers regular R^{2} for each additional covariate.

Model fit with multiple predictors

- R^{2} mechanically increases when you add a variables to the regression.
- But this could be overfitting!!
- Solution: penalize regression models with more variables.
- Occam's razor: simpler models are preferred
- Adjusted R^{2} : lowers regular R^{2} for each additional covariate.
- If the added covariates doesn't help predict, adjusted R^{2} goes down!

Comparing model fits

```
library(broom)
fit.app <- lm(seat_change ~ approval, data = midterms)
glance(fit.app) |>
    select(r.squared, adj.r.squared, sigma)
```

\#\# \# A tibble: 1×3			
\#\#	r.squared adj.r.squared	sigma	
\#\#	<dbl>	<dbl>	<dbl>
\#\# 1	0.450	0.418	16.9

```
glance(mult.fit) |>
    select(r.squared, adj.r.squared, sigma)
```

\#\# \# A tibble: 1×3			
\#\#	r.squared adj.r.squared	sigma	
\#\#	<dbl>	<dbl>	<dbl>
\#\# 1	0.468	0.397	16.7

Predicted values from \mathbf{R}

We could plug in values into the equation, but R can do this for us. The \{modelr\} package gives some functions that allow us to predictions in a tidy way:

Let's use add_predictions() to predict the 2022 results

```
library(modelr)
midterms |>
    filter(year == 2022) |>
    add_predictions(mult.fit)
```

\#\# \# A tibble: 1×7
\#\# year president party approval seat_change rdi_cha~1 pred
\#\# <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
\#\# 12022 Biden D 42 NA -0.003 -53.2
\#\# \# ... with abbreviated variable name 1: rdi_change

Predictions from several models

The gather_predictions() will return one row for each model passed to it with the prediction for that model:

```
midterms |>
    filter(year == 2022) |>
    gather_predictions(fit.app, mult.fit)
```

\#\# \# A tibble: 2 x 8
\#\# model year presi~1 party appro~2 seat_~3 rdi_c~4 pred
\#\# <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
\#\# 1 fit.app 2022 Biden $\quad 42$ NA -0.003 -36.9
\#\# 2 mult.fit 2022 Biden 42 NA -0.003 -53.2
\#\# \# ... with abbreviated variable names 1: president,
\#\# \# 2: approval, 3: seat_change, 4: rdi_change

Predictions from new data

What about predicted values not in data?

```
tibble(approval = c(50, 75), rdi_change = 0) |>
    gather_predictions(fit.app, mult.fit)
```

\#\# \# A tibble: 4×4
\#\# model approval rdi_change pred
\#\# <chr> <dbl> <dbl> <dbl>
\#\# 1 fit.app $50 \quad 0$-25.6
\#\# 2 fit.app 7509.92
\#\# 3 mult.fit $50 \quad 0-40.9$
$\begin{array}{llll}\text { \#\# } 4 \text { mult.fit } 75 & 0 & -2.79\end{array}$

Predictions from augment ()

We can also get predicted values from the augment () function using the newdata argument:

```
newdata <- tibble(approval = c(50, 75), rdi_change = 0)
augment(mult.fit, newdata = newdata)
```

\#\# \# A tibble: 2×3
\#\# approval rdi_change .fitted
\#\# <dbl> <dbl> <dbl>
\#\# $1000-40.9$
$\begin{array}{llll}\# \# 2 & 75 & 0 & -2.79\end{array}$

2/ Categorical independent variables

Political effects of gov't programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000

Political effects of gov't programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
- Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.

Political effects of gov't programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
- Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.
- Do these programs have political effects?

Political effects of gov't programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
- Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.
- Do these programs have political effects?
- Program had support from most parties.

Political effects of gov't programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
- Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.
- Do these programs have political effects?
- Program had support from most parties.
- Was implemented in a nonpartisan fashion.

Political effects of gov’t programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
- Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.
- Do these programs have political effects?
- Program had support from most parties.
- Was implemented in a nonpartisan fashion.
- Would the incumbent presidential party be rewarded?

The data

- Randomized roll-out of the CCT program:

The data

- Randomized roll-out of the CCT program:
- treatment: receive CCT 21 months before 2000 election

The data

- Randomized roll-out of the CCT program:
- treatment: receive CCT 21 months before 2000 election
- control: receive CCT 6 months before 2000 election
- Randomized roll-out of the CCT program:
- treatment: receive CCT 21 months before 2000 election
- control: receive CCT 6 months before 2000 election
- Does having CCT longer mobilize voters for incumbent PRI party?
- Randomized roll-out of the CCT program:
- treatment: receive CCT 21 months before 2000 election
- control: receive CCT 6 months before 2000 election
- Does having CCT longer mobilize voters for incumbent PRI party?

Name	Description
treatment	early Progresa (1) or late Progresa (0) pri2000s
PRI votes in the 2000 election as a share of adults in precinct	
t2000	turnout in the 2000 election as share of adults in precinct

- Randomized roll-out of the CCT program:
- treatment: receive CCT 21 months before 2000 election
- control: receive CCT 6 months before 2000 election
- Does having CCT longer mobilize voters for incumbent PRI party?

Name	Description
treatment	early Progresa (1) or late Progresa (0) pri2000s
PRI votes in the 2000 election as a share of adults in precinct	
t2000	turnout in the 2000 election as share of adults in precinct

```
library(qss)
data("progresa", package = "qss")
cct <- as_tibble(progresa) |>
    select(treatment, pri2000s, t2000)
cct
```


Difference in means estimates

Does CCT affect turnout?

```
cct |> group_by(treatment) |>
    summarize(t2000 = mean(t2000)) |>
    pivot_wider(names_from = treatment, values_from = t2000) |>
    mutate(ATE = `1` - `0`)
```

```
## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 63.8 68.1 4.27
```


Difference in means estimates

Does CCT affect turnout?

```
cct |> group_by(treatment) |>
    summarize(t2000 = mean(t2000)) |>
    pivot_wider(names_from = treatment, values_from = t2000) |>
    mutate(ATE = `1` - `0`)
```

```
## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 63.8 68.1 4.27
```

Does CCT affect PRI (incumbent) votes?

```
cct |> group_by(treatment) |>
    summarize(pri2000s = mean(pri2000s)) |>
    pivot_wider(names_from = treatment, values_from = pri2000s) |>
    mutate(ATE = `1` - `0`)
```


Binary independent variables

$$
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i}
$$

Binary independent variables

$$
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i}
$$

- When independent variable X_{i} is binary:

Binary independent variables

$$
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i}
$$

- When independent variable X_{i} is binary:
- Intercept $\hat{\alpha}$ is the average outcome in the $X=0$ group.

Binary independent variables

$$
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i}
$$

- When independent variable X_{i} is binary:
- Intercept $\hat{\alpha}$ is the average outcome in the $X=0$ group.
- Slope $\hat{\beta}$ is the difference-in-means of Y between $X=1$ group and $X=0$ group.

$$
\hat{\beta}=\bar{Y}_{\text {treated }}-\bar{Y}_{\text {control }}
$$

Binary independent variables

$$
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i}
$$

- When independent variable X_{i} is binary:
- Intercept $\hat{\alpha}$ is the average outcome in the $X=0$ group.
- Slope $\hat{\beta}$ is the difference-in-means of Y between $X=1$ group and $X=0$ group.

$$
\hat{\beta}=\bar{Y}_{\text {treated }}-\bar{Y}_{\text {control }}
$$

- If there are other independent variables, this becomes the difference-in-means controlling for those covariates.

Linear regression for experiments

- Under randomization, we can estimate the ATE with regression:

```
cct |> group_by(treatment) |>
    summarize(pri2000s = mean(pri2000s)) |>
    pivot_wider(names_from = treatment, values_from = pri2000s) |>
    mutate(ATE = `1` - `0`)
```

\#\# \# A tibble:	1	x	3	
\#\#	`0`	`1.	ATE	
\#\#	<dbl>	<dbl>	<dbl>	
\#\#	1	34.5	38.1	3.62

lm(pri2000s ~ treatment, data $=c c t) \mid>\operatorname{coef}()$

\#\# (Intercept)	treatment	
\#\#	34.49	3.62

Categorical variables in regression

- We often have categorical variables:

Categorical variables in regression

- We often have categorical variables:
- Race/ethnicity: white, Black, Latino, Asian.

Categorical variables in regression

- We often have categorical variables:
- Race/ethnicity: white, Black, Latino, Asian.
- Partisanship: Democrat, Republican, Independent

Categorical variables in regression

- We often have categorical variables:
- Race/ethnicity: white, Black, Latino, Asian.
- Partisanship: Democrat, Republican, Independent
- Strategy for including in a regression: create a series of binary variables

Categorical variables in regression

- We often have categorical variables:
- Race/ethnicity: white, Black, Latino, Asian.
- Partisanship: Democrat, Republican, Independent
- Strategy for including in a regression: create a series of binary variables

Unit	Party	Democrat	Republican	Independent
1	Democrat	1	0	0
2	Democrat	1	0	0
3	Independent	0	0	1
4	Republican	0	1	0
\vdots	\vdots	\vdots	\vdots	\vdots

Categorical variables in regression

- We often have categorical variables:
- Race/ethnicity: white, Black, Latino, Asian.
- Partisanship: Democrat, Republican, Independent
- Strategy for including in a regression: create a series of binary variables

Unit	Party	Democrat	Republican	Independent
1	Democrat	1	0	0
2	Democrat	1	0	0
3	Independent	0	0	1
4	Republican	0	1	0
\vdots	\vdots	\vdots	\vdots	\vdots

- Then include all but one of these binary variables:

$$
\text { turnout }_{i}=\alpha+\beta_{1} \text { Republican }_{i}+\beta_{2} \text { Independent }_{i}+\varepsilon_{i}
$$

Interpreting categorical variables

turnout $_{i}=\alpha+\beta_{1}$ Republican $_{i}+\beta_{2}$ Independent $_{i}+\varepsilon_{i}$

- $\hat{\alpha}$: average outcome in the omitted group/baseline (Democrats).

Interpreting categorical variables

$$
\text { turnout }_{i}=\alpha+\beta_{1} \text { Republican }_{i}+\beta_{2} \text { Independent }_{i}+\varepsilon_{i}
$$

- $\hat{\alpha}$: average outcome in the omitted group/baseline (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the baseline.

Interpreting categorical variables

$$
\text { turnout }_{i}=\alpha+\beta_{1} \text { Republican }_{i}+\beta_{2} \text { Independent }_{i}+\varepsilon_{i}
$$

- $\hat{\alpha}$: average outcome in the omitted group/baseline (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the baseline.
- $\hat{\beta}_{1}$: average difference in turnout between Republicans and Democrats

Interpreting categorical variables

$$
\text { turnout }_{i}=\alpha+\beta_{1} \text { Republican }_{i}+\beta_{2} \text { Independent }_{i}+\varepsilon_{i}
$$

- $\hat{\alpha}$: average outcome in the omitted group/baseline (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the baseline.
- $\hat{\beta}_{1}$: average difference in turnout between Republicans and Democrats
- $\hat{\beta}_{2}$: average difference in turnout between Independents and Democrats

CCES data

library(gov50data)
 cces_2020

```
## # A tibble: 51,551 x 6
## gender race educ pid3 turno~1 pres_~2
## <fct> <fct> <fct>
## 1 Male White 2-year
## 2 Female White Post-grad
## 3 Female White 4-year
## 4 Female White 4-year
## 5 Male White 4-year
## 6 Male White Some college
## 7 Male Black Some college
## 8 Female White Some college
    <fct> <dbl> <fct>
    Republ~ 1 Donald~
    Democr~ NA <NA>
    Indepe~ 1 Joe Bi~
    Democr~ 1 Joe Bi~
    Indepe~ 1 Other
    Republ~ 1 Donald~
    Not su~ NA <NA>
    Indepe~ 1 Donald~
## 9 Female White High school graduate Republ~ 1 Donald~
## 10 Female White 4-year Democr~ 1 Joe Bi~
## # ... with 51,541 more rows, and abbreviated variable names
## # 1: turnout_self, 2: pres_vote
```


Categorical variables in the CCES data

```
turnout_pred <- lm(turnout_self ~ pid3, data = cces_2020)
turnout_pred
```

\#\#
\#\# Call:
\#\# lm(formula $=$ turnout_self ~ pid3, data = cces_2020)
\#\#
\#\# Coefficients:

\#\#	(Intercept)	pid3Republican	pid3Independent
\#\#	0.9635	-0.0103	-0.0394
\#\#	pid3Other	pid3Not sure	
\#\#	-0.0066	-0.3331	

What R does internally with factor variables in lm

```
cces_2020 |> drop_na(turnout_self, pid3) |> select(pid3) |> pull() |>
    head()
```

\#\# [1] Republican Independent Democrat Independent
\#\# [5] Republican Independent
\#\# 7 Levels: Democrat Republican Independent ... not asked
model.matrix(turnout_pred) |>
head()

\#\#	(Intercept)	pid3Republican	pid3Independent	pid30ther
\#\#	1	1	1	0
\#\#	3	1	0	1
\#\#	4	1	0	0
\#\#	5	1	0	1

\#\#	pid3Not sure
\#\# 1	0
\#\# 3	0
\#\# 4	0
\#\# 5	0
\#\# 6	0

