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1/ Model fit



Presidential popularity and the midterms

• Does popularity of the president or recent changes in the economy
better predict midterm election outcomes?

Name Description
year midterm election year
president name of president
party Democrat or Republican
approval Gallup approval rating at midterms
rdi_change % change in real disposable income over the year

before midterms
seat_change change in the number of House seats for the pres-

ident’s party
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library(gov50data)
midterms
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## # A tibble: 20 x 6
## year president party approval seat_change rdi_change
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1946 Truman D 33 -55 NA
## 2 1950 Truman D 39 -29 8.2
## 3 1954 Eisenhower R 61 -4 1
## 4 1958 Eisenhower R 57 -47 1.1
## 5 1962 Kennedy D 61 -4 5
## 6 1966 Johnson D 44 -47 5.3
## 7 1970 Nixon R 58 -8 6.6
## 8 1974 Ford R 54 -43 6.4
## 9 1978 Carter D 49 -11 7.7
## 10 1982 Reagan R 42 -28 4.8
## 11 1986 Reagan R 63 -5 5.1
## 12 1990 H.W. Bush R 58 -8 5.6
## 13 1994 Clinton D 46 -53 3.9
## 14 1998 Clinton D 66 5 5.6
## 15 2002 W. Bush R 63 6 2.6
## 16 2006 W. Bush R 38 -30 5.7
## 17 2010 Obama D 45 -63 3.5
## 18 2014 Obama D 40 -13 4.6
## 19 2018 Trump R 38 -42 4.1
## 20 2022 Biden D 42 NA -0.003
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Fitting the approval model

fit.app <- lm(seat_change ~ approval, data = midterms)
fit.app

##
## Call:
## lm(formula = seat_change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.58 1.42

For a one-point increase in presidential approval, the predicted seat change
increases by 1.42
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Fitting the income model

fit.rdi <- lm(seat_change ~ rdi_change, data = midterms)
fit.rdi

##
## Call:
## lm(formula = seat_change ~ rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) rdi_change
## -29.41 1.21

For a one-point increase in the change in real disposable income, the
predicted seat change increases by 1.21
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Comparing models
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• How well do the models “fit the data”?

• How well does the model predict the outcome variable in the data?
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Model fit

Model prediction error:

prediction error =
𝘯

∑
𝘪=𝟣

(actual𝘪 − predicted𝘪)
𝟤

Prediction error for regression: Sum of squared residuals

SSR =
𝘯

∑
𝘪=𝟣

(𝘠𝘪 − 𝘠𝘪)
𝟤

Lower SSR is better, right?
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These two regression lines have approximately the same SSR:
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Benchmarking model fit
Benchmarking our predictions using the proportional reduction in error:

reduction in prediction error using model
baseline prediction error

Baseline prediction error without a regression is using the mean of 𝘠 to
predict. This is called the Total sum of squares:

TSS =
𝘯

∑
𝘪=𝟣

(𝘠𝘪 − 𝘠 )𝟤

Leads to the coefficient of determination, 𝘙𝟤, one summary of LS model fit:

𝘙𝟤 = 𝘛𝘚𝘚 − 𝘚𝘚𝘙
𝘛𝘚𝘚 = how much smaller LS prediction errors are vs mean

prediction error using the mean
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Total SS vs SSR
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Total SS vs SSR
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Model fit in R

• To access 𝘙𝟤 from the lm() output, use the summary() function:

fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared

## [1] 0.45

• Compare to the fit using change in income:

fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared

## [1] 0.012

• Which does a better job predicting midterm election outcomes?
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Accessing model fit via broom package

We can also access summary statistics like model fit using the glance()
function from broom:
library(broom)
glance(fit.app)

## # A tibble: 1 x 12
## r.squared adj.r~1 sigma stati~2 p.value df logLik AIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.450 0.418 16.9 13.9 0.00167 1 -79.6 165.
## # ... with 4 more variables: BIC <dbl>, deviance <dbl>,
## # df.residual <int>, nobs <int>, and abbreviated variable
## # names 1: adj.r.squared, 2: statistic
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Fake data, better fit

• Little hard to see what’s happening in that example.

• Let’s look at fake variables x and y:
fit.x <- lm(y ~ x)

• Very good model fit: 𝘙𝟤 ≈ 0.95
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Fake data, better fit
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Is R-squared useful?
• Can be very misleading. Each of these samples have the same 𝘙𝟤 even
though they are vastly different:
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Overfitting

• In-sample fit: how well your model predicts the data used to estimate
it.

• 𝘙𝟤 is a measure of in-sample fit.

• Out-of-sample fit: how well your model predicts new data.

• Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

• Example: predicting winner of Democratic presidential primary with
gender of the candidate.

• Until 2016, gender was a perfect predictor of who wins the primary.
• Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
• Bad out-of-sample prediction due to overfitting!

21 / 26



Overfitting

• In-sample fit: how well your model predicts the data used to estimate
it.

• 𝘙𝟤 is a measure of in-sample fit.

• Out-of-sample fit: how well your model predicts new data.

• Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

• Example: predicting winner of Democratic presidential primary with
gender of the candidate.

• Until 2016, gender was a perfect predictor of who wins the primary.
• Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
• Bad out-of-sample prediction due to overfitting!

21 / 26



Overfitting

• In-sample fit: how well your model predicts the data used to estimate
it.

• 𝘙𝟤 is a measure of in-sample fit.

• Out-of-sample fit: how well your model predicts new data.

• Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

• Example: predicting winner of Democratic presidential primary with
gender of the candidate.

• Until 2016, gender was a perfect predictor of who wins the primary.
• Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
• Bad out-of-sample prediction due to overfitting!

21 / 26



Overfitting

• In-sample fit: how well your model predicts the data used to estimate
it.

• 𝘙𝟤 is a measure of in-sample fit.

• Out-of-sample fit: how well your model predicts new data.

• Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

• Example: predicting winner of Democratic presidential primary with
gender of the candidate.

• Until 2016, gender was a perfect predictor of who wins the primary.
• Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
• Bad out-of-sample prediction due to overfitting!

21 / 26



Overfitting

• In-sample fit: how well your model predicts the data used to estimate
it.

• 𝘙𝟤 is a measure of in-sample fit.

• Out-of-sample fit: how well your model predicts new data.

• Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

• Example: predicting winner of Democratic presidential primary with
gender of the candidate.

• Until 2016, gender was a perfect predictor of who wins the primary.
• Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
• Bad out-of-sample prediction due to overfitting!

21 / 26



Overfitting

• In-sample fit: how well your model predicts the data used to estimate
it.

• 𝘙𝟤 is a measure of in-sample fit.

• Out-of-sample fit: how well your model predicts new data.

• Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

• Example: predicting winner of Democratic presidential primary with
gender of the candidate.

• Until 2016, gender was a perfect predictor of who wins the primary.

• Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
• Bad out-of-sample prediction due to overfitting!

21 / 26



Overfitting

• In-sample fit: how well your model predicts the data used to estimate
it.

• 𝘙𝟤 is a measure of in-sample fit.

• Out-of-sample fit: how well your model predicts new data.

• Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

• Example: predicting winner of Democratic presidential primary with
gender of the candidate.

• Until 2016, gender was a perfect predictor of who wins the primary.
• Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.

• Bad out-of-sample prediction due to overfitting!

21 / 26



Overfitting

• In-sample fit: how well your model predicts the data used to estimate
it.

• 𝘙𝟤 is a measure of in-sample fit.

• Out-of-sample fit: how well your model predicts new data.

• Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

• Example: predicting winner of Democratic presidential primary with
gender of the candidate.

• Until 2016, gender was a perfect predictor of who wins the primary.
• Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
• Bad out-of-sample prediction due to overfitting!

21 / 26



2/ Multiple regression



Multiple predictors

What if we want to predict 𝘠 as a function of many variables?

seat_change𝘪 = 𝛼 + 𝛽𝟣approval𝘪 + 𝛽𝟤rdi_change𝘪 + 𝜖𝘪

Why?

• Better predictions (at least in-sample).

• Better interpretation as ceteris paribus relationships:

• 𝛽𝟣 is the relationship between approval and seat_change holding
rdi_change constant.

• Statistical control in a cross-sectional study.
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Multiple regression in R
mult.fit <- lm(seat_change ~ approval + rdi_change,

data = midterms)
mult.fit

##
## Call:
## lm(formula = seat_change ~ approval + rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi_change
## -117.23 1.53 3.22

• ̂𝛼 = -117.2: average seat change president has 0% approval and no
change in income levels.

• ̂𝛽𝟣 = 1.53: average increase in seat change for additional percentage
point of approval, holding RDI change fixed

• ̂𝛽𝟤 = 3.217: average increase in seat change for each additional
percentage point increase of RDI, holding approval fixed
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Least squares with multiple regression

• How do we estimate the coefficients?

• The same exact way as before: minimize prediction error!

• Residuals (aka prediction error) with multiple predictors:

𝘠𝘪 − 𝘠𝘪 = seat_change𝘪 − ̂𝛼 − ̂𝛽𝟣approval𝘪 − ̂𝛽𝟤rdi_change𝘪

• Find the coefficients that minimizes the sum of the squared residuals:

SSR =
𝘯

∑
𝘪=𝟣

̂𝜖𝟤
𝘪 = (𝘠𝘪 − ̂𝛼 − ̂𝛽𝟣𝘟𝘪𝟣 − ̂𝛽𝟤𝘟𝘪𝟤)𝟤
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• Find the coefficients that minimizes the sum of the squared residuals:

SSR =
𝘯

∑
𝘪=𝟣

̂𝜖𝟤
𝘪 = (𝘠𝘪 − ̂𝛼 − ̂𝛽𝟣𝘟𝘪𝟣 − ̂𝛽𝟤𝘟𝘪𝟤)𝟤
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Model fit with multiple predictors

• 𝘙𝟤 mechanically increases when you add a variables to the regression.

• But this could be overfitting!!

• Solution: penalize regression models with more variables.

• Occam’s razor: simpler models are preferred

• Adjusted 𝘙𝟤: lowers regular 𝘙𝟤 for each additional covariate.

• If the added covariates doesn’t help predict, adjusted 𝘙𝟤 goes down!
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Comparing model fits

glance(fit.app) |>
select(r.squared, adj.r.squared, sigma)

## # A tibble: 1 x 3
## r.squared adj.r.squared sigma
## <dbl> <dbl> <dbl>
## 1 0.450 0.418 16.9
glance(mult.fit) |>
select(r.squared, adj.r.squared, sigma)

## # A tibble: 1 x 3
## r.squared adj.r.squared sigma
## <dbl> <dbl> <dbl>
## 1 0.468 0.397 16.7
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