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Roadmap

1. Prediction

2. Modeling with a line

3. Linear regression in R
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1/ Prediction



Predicting my weight

Predicting weight with activity: health data

Name Description
date date of measurements
active_calories calories burned
steps number of steps taken (in 1,000s)
weight weight (lbs)
steps_lag steps on day before (in 1,000s)
calories_lag calories burned on day before
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Predicting using bivariate relationship

• Goal: what’s our best guess about 𝘠𝘪 if we know what 𝘟𝘪 is?

• what’s our best guess about my weight this morning if I know how many
steps I took yesterday?

• Terminology:

• Dependent/outcome variable: what we want to predict (weight).
• Independent/explanatory variable: what we’re using to predict (steps).
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Weight data

• Load the data:

library(gov50data)
health <- drop_na(health)

• Plot the data:

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”steelblue1”) +
labs(
x = ”Steps on day prior (in 1000s)”,
y = ”Weight”,
title = ”Weight and Steps”

)
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Prediction one variable with another

• Prediction with access to just 𝘠 : average of the 𝘠 values.

• Prediction with another variable: for any value of 𝘟 , what’s the best
guess about 𝘠 ?

• Need a function 𝘺 = 𝘧 (𝘹) that maps values of 𝘟 into predictions.
• Machine learning: fancy ways to determine 𝘧 (𝘹)

• Example: what if did 5,000 steps today? What’s my best guess about
weight?
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Start with looking at a narrow strip of X
Let’s find all values that round to 5,000 steps:
health |>
filter(round(steps_lag) == 5)

## # A tibble: 12 x 6
## date active.calories steps weight steps_lag calor~1
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-09-08 1111. 15.2 169. 5.02 410.
## 2 2015-12-12 728. 14.7 167. 5.36 259.
## 3 2015-12-28 430. 8.94 170. 5.19 314
## 4 2016-01-29 475. 8.26 171. 4.95 314.
## 5 2016-02-14 264. 5.42 172. 4.86 297.
## 6 2016-02-15 892. 13.1 171. 5.42 264.
## 7 2016-05-02 627. 11.8 170. 5.04 283.
## 8 2016-06-27 352. 7.21 169. 4.93 212.
## 9 2016-07-22 766. 14.8 167. 4.96 251.
## 10 2016-11-25 452 9.4 173. 5.26 295
## 11 2016-11-28 577. 11.8 171. 4.97 304.
## 12 2016-12-30 621. 12.4 176. 5.42 371.
## # ... with abbreviated variable name 1: calorie_lag
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Best guess about Y for this X

Best prediction about weight for a step count of roughly 5,000 is the average
weight for observations around that value:
mean_wt_5k_steps <- health |>
filter(round(steps_lag) == 5) |>
summarize(mean(weight)) |>
pull()

mean_wt_5k_steps

## [1] 171
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Plotting the best guess

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”steelblue1”, alpha = 0.5) +
labs(

x = ”Steps on day prior (in 1000s)”,
y = ”Weight”,
title = ”Weight and Steps”

) +
geom_vline(xintercept = c(4.5, 5.5), linetype = ”dashed”) +
geom_point(aes(x = 5, y = mean_wt_5k_steps), color = ”indianred1”,

size = 3)
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Binned means

We can use a stat_summary_bin() to add these binned means all over
the scatter plot:
ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”steelblue1”, alpha = 0.25) +
labs(

x = ”Steps on day prior (in 1000s)”,
y = ”Weight”,
title = ”Weight and Steps”

) +
stat_summary_bin(fun = ”mean”, color = ”indianred1”, size = 3,

geom = ”point”, binwidth = 1)
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Smaller bins

But what happens when we make the bins too small?
ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”steelblue1”, alpha = 0.25) +
labs(

x = ”Steps on day prior (in 1000s)”,
y = ”Weight”,
title = ”Weight and Steps”

) +
stat_summary_bin(fun = ”mean”, color = ”indianred1”, size = 2,

geom = ”point”, binwidth = 0.5) +
geom_vline(xintercept = c(2.5, 3, 23, 23.5), linetype = ”dashed”)
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Gaps and bumps:
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2/ Modeling with a line



Using a line to predict

• Can we smooth out these binned means and close gaps? A model.

• Simplest possible way to relate two variables: a line.

𝘺 = 𝘮𝘹 + 𝘣

• Problem: for any line we draw, not all the data is on the line.

• Some points will be above the line, some below.
• Need a way to account for chance variation away from the line.
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Linear regression model

• Model for the line of best fit:

𝘠𝘪 = 𝛼⏟
intercept

+ 𝛽⏟
slope

⋅𝘟𝘪 + 𝜖𝘪⏟
error term

• Coefficients/parameters (𝛼, 𝛽): true unknown intercept/slope of the
line of best fit.

• Chance error 𝜖𝘪 : accounts for the fact that the line doesn’t perfectly fit
the data.

• Each observation allowed to be off the regression line.
• Chance errors are 0 on average.

• Useful fiction: this model represents the data generating process

• George Box: “all models are wrong, some are useful”
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Interpreting the regression line

𝘠𝘪 = 𝛼 + 𝛽 ⋅ 𝘟𝘪 + 𝜖𝘪

• Intercept 𝛼: average value of 𝘠 when 𝘟 is 0

• Average weight when I take 0 steps the day prior.

• Slope 𝛽: average change in 𝘠 when 𝘟 increases by one unit.

• Average decrease in weight for each additional 1,000 steps.
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Estimated coefficients

• Parameters: 𝛼, 𝛽

• Unknown features of the data-generating process.
• Chance error makes these impossible to observe directly.

• Estimates: ̂𝛼, ̂𝛽

• An estimate is our best guess about some parameter.

• Regression line: 𝘠 = ̂𝛼 + ̂𝛽 ⋅ 𝘹

• Average value of 𝘠 when 𝘟 is equal to 𝘹 .
• Represents the best guess or predicted value of the outcome at 𝘹 .
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Line of best fit

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”steelblue1”) +
labs(

x = ”Steps on day prior (in 1000s)”,
y = ”Weight”,
title = ”Weight and Steps”

) +
geom_smooth(method = ”lm”, se = FALSE, color = ”indianred1”, size = 1.5)
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Line of best fit
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Why not this line?
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Prediction error

Let’s understand the prediction error for a line with intercept 𝘢 and slope 𝘣.

Fitted/predicted value for unit 𝘪 :

𝘢 + 𝘣 ⋅ 𝘟𝘪

Preidiction error (residual):

error = actual - predicted = 𝘠𝘪 − (𝘢 + 𝘣 ⋅ 𝘟𝘪 )
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Prediction errors/residuals

positive
error

negative
error
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Least squares

• Get these estimates by the least squares method.

• Minimize the sum of the squared residuals (SSR):

SSR =
𝘯

∑
𝘪=𝟣

(prediction error𝘪 )𝟤 =
𝘯

∑
𝘪=𝟣

(𝘠𝘪 − 𝘢 − 𝘣 ⋅ 𝘟𝘪 )𝟤

• Finds the line that minimizes the magnitude of the prediction errors!
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Linear regression in R

• R will calculate least squares line for a data set using lm().

• Syntax: lm(y ~ x, data = mydata)
• y is the name of the dependent variance
• x is the name of the independent variable
• mydata is the data.frame where they live

fit <- lm(weight ~ steps_lag, data = health)
fit

##
## Call:
## lm(formula = weight ~ steps_lag, data = health)
##
## Coefficients:
## (Intercept) steps_lag
## 170.675 -0.231
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Coefficients

Use coef() to extract estimated coefficients:
coef(fit)

## (Intercept) steps_lag
## 170.675 -0.231

Interpretation: a 1-unit increase in 𝘟 (1,000 steps) is associated with a
decrease in the average weight of 0.231 pounds.

Question: what would this model predict about the change in average weight
for a 10,000 step increase in steps?
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broom package
The broom package can provide nice summaries of the regression output.

augment() can show fitted values, residuals and other unit-level statistics:
library(broom)
augment(fit) |> head()

## # A tibble: 6 x 8
## weight steps_lag .fitted .resid .hat .sigma .cooksd
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 169. 17.5 167. 2.46 0.00369 4.68 5.13e-4
## 2 168 18.4 166. 1.57 0.00463 4.68 2.64e-4
## 3 167. 19.6 166. 1.05 0.00609 4.68 1.54e-4
## 4 168. 10.4 168. -0.0750 0.00217 4.68 2.80e-7
## 5 168. 18.7 166. 1.44 0.00496 4.68 2.38e-4
## 6 166. 9.14 169. -2.27 0.00296 4.68 3.49e-4
## # ... with 1 more variable: .std.resid <dbl>
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Properties of least squares

Least squares line always goes through (𝘟, 𝘠 ).
ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”steelblue1”) +
labs(

x = ”Steps on day prior (in 1000s)”,
y = ”Weight”,
title = ”Weight and Steps”

) +
geom_hline(yintercept = mean(health$weight), linetype = ”dashed”) +
geom_vline(xintercept = mean(health$steps_lag), linetype = ”dashed”) +
geom_smooth(method = ”lm”, se = FALSE, color = ”indianred1”, size = 1.5)
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Least squares line always goes through (𝘟, 𝘠 ).
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Properties of least squares line

Estimated slope is related to correlation:

̂𝛽 = (correlation of 𝘟 and 𝘠 ) × SD of 𝘠
SD of 𝘟

Mean of residuals is always 0.
augment(fit) |>

summarize(mean(.resid))

## # A tibble: 1 x 1
## `mean(.resid)`
## <dbl>
## 1 -1.21e-13
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Plotting the residuals

augment(fit) |>
ggplot(aes(x = steps_lag, y = .resid)) +
geom_point(color = ”steelblue1”, alpha = 0.75) +
labs(

x = ”Steps on day prior (in 1000s)”,
y = ”Residuals”,
title = ”Residual plot”

) +
geom_smooth(method = ”lm”, se = FALSE, color = ”indianred1”, size = 1.5)
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Smoothed graph of averages

Another way to think of the regression line is a smoothed version of the
binned means plot:
ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”steelblue1”, alpha = 0.25) +
labs(

x = ”Steps on day prior (in 1000s)”,
y = ”Weight”,
title = ”Weight and Steps”

) +
stat_summary_bin(fun = ”mean”, color = ”indianred1”, size = 3,

geom = ”point”, binwidth = 1) +
geom_smooth(method = ”lm”, se = FALSE, color = ”indianred1”, size = 1.5)
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