Gov 50: 13. Regression

Matthew Blackwell

Harvard University

Roadmap

1. Prediction

2. Modeling with a line
3. Linear regression in R

1/ Prediction

Predicting my weight

Predicting weight with activity: heal th data

Name	Description
date	date of measurements
active_calories	calories burned
steps	number of steps taken (in 1,000s)
weight	weight (lbs)
steps_lag	steps on day before (in 1,000s)
calories_lag	calories burned on day before

Predicting using bivariate relationship

- Goal: what's our best guess about Y_{i} if we know what X_{i} is?

Predicting using bivariate relationship

- Goal: what's our best guess about Y_{i} if we know what X_{i} is?
- what's our best guess about my weight this morning if I know how many steps I took yesterday?

Predicting using bivariate relationship

- Goal: what's our best guess about Y_{i} if we know what X_{i} is?
- what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:

Predicting using bivariate relationship

- Goal: what's our best guess about Y_{i} if we know what X_{i} is?
- what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:
- Dependent/outcome variable: what we want to predict (weight).

Predicting using bivariate relationship

- Goal: what's our best guess about Y_{i} if we know what X_{i} is?
- what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:
- Dependent/outcome variable: what we want to predict (weight).
- Independent/explanatory variable: what we're using to predict (steps).

Weight data

- Load the data:

Weight data

- Load the data:
library(gov50data)
health <- drop_na(health)

Weight data

- Load the data:

```
library(gov50data)
health <- drop_na(health)
```

- Plot the data:

Weight data

- Load the data:
library(gov50data)
health <- drop_na(health)
- Plot the data:

```
ggplot(health, aes(x = steps_lag, y = weight)) +
    geom_point(color = "steelblue1") +
    labs(
    x = "Steps on day prior (in 1000s)",
    y = "Weight",
    title = "Weight and Steps"
    )
```


Weight and Steps

Prediction one variable with another

- Prediction with access to just Y : average of the Y values.

Prediction one variable with another

- Prediction with access to just Y : average of the Y values.
- Prediction with another variable: for any value of X, what's the best guess about Y ?

Prediction one variable with another

- Prediction with access to just Y : average of the Y values.
- Prediction with another variable: for any value of X, what's the best guess about Y ?
- Need a function $y=f(x)$ that maps values of X into predictions.

Prediction one variable with another

- Prediction with access to just Y : average of the Y values.
- Prediction with another variable: for any value of X, what's the best guess about Y ?
- Need a function $y=f(x)$ that maps values of X into predictions.
- Machine learning: fancy ways to determine $f(x)$

Prediction one variable with another

- Prediction with access to just Y : average of the Y values.
- Prediction with another variable: for any value of X, what's the best guess about Y ?
- Need a function $y=f(x)$ that maps values of X into predictions.
- Machine learning: fancy ways to determine $f(x)$
- Example: what if did 5,000 steps today? What's my best guess about weight?

Start with looking at a narrow strip of X

Let's find all values that round to 5,000 steps:

```
health |>
    filter(round(steps_lag) == 5)
```

\#\# \# A tibble: 12 x 6
\#\# date active.calories steps weight steps_lag calor~1
\#\# <date>
\#\# 1 2015-09-08 <dbl> <dbl> <dbl> <dbl> <dbl>
\#\# 2 2015-12-12
\#\# 3 2015-12-28
\#\# 4 2016-01-29
\#\# 5 2016-02-14
\#\# 6 2016-02-15
\#\# 7 2016-05-02
\#\# 8 2016-06-27
\#\# 9 2016-07-22
\#\# 10 2016-11-25
\#\# 11 2016-11-28
\#\# 12 2016-12-30
1111. 15.2 169. 5.02410 .
728. 14.7 167. 5.36 259.
\#\# \# ... with abbreviated variable name 1: calorie_lag

Best guess about Y for this X

Best prediction about weight for a step count of roughly 5,000 is the average weight for observations around that value:

```
mean_wt_5k_steps <- health |>
    filter(round(steps_lag) == 5) |>
    summarize(mean(weight)) |>
    pull()
mean_wt_5k_steps
```

\#\# [1] 171

Plotting the best guess

```
ggplot(health, aes(x = steps_lag, y = weight)) +
    geom_point(color = "steelblue1", alpha = 0.5) +
    labs(
        x = "Steps on day prior (in 1000s)",
        y = "Weight",
        title = "Weight and Steps"
    ) +
    geom_vline(xintercept = c(4.5, 5.5), linetype = "dashed") +
    geom_point(aes(x = 5, y = mean_wt_5k_steps), color = "indianred1",
    size = 3)
```


Weight and Steps

Binned means

We can use a stat_summary_bin() to add these binned means all over the scatter plot:

```
ggplot(health, aes(x = steps_lag, y = weight)) +
    geom_point(color = "steelblue1", alpha = 0.25) +
    labs(
        x = "Steps on day prior (in 1000s)",
        y = "Weight",
        title = "Weight and Steps"
    ) +
    stat_summary_bin(fun = "mean", color = "indianred1", size = 3,
        geom = "point", binwidth = 1)
```


Weight and Steps

Smaller bins

But what happens when we make the bins too small?

```
ggplot(health, aes(x = steps_lag, y = weight)) +
    geom_point(color = "steelblue1", alpha = 0.25) +
    labs(
        x = "Steps on day prior (in 1000s)",
        y = "Weight",
        title = "Weight and Steps"
    ) +
    stat_summary_bin(fun = "mean", color = "indianred1", size = 2,
        geom = "point", binwidth = 0.5) +
    geom_vline(xintercept = c(2.5, 3, 23, 23.5), linetype = "dashed")
```

Gaps and bumps:

Weight and Steps

2/ Modeling with a line

Using a line to predict

- Can we smooth out these binned means and close gaps? A model.

Using a line to predict

- Can we smooth out these binned means and close gaps? A model.
- Simplest possible way to relate two variables: a line.

$$
y=m x+b
$$

Using a line to predict

- Can we smooth out these binned means and close gaps? A model.
- Simplest possible way to relate two variables: a line.

$$
y=m x+b
$$

- Problem: for any line we draw, not all the data is on the line.

Using a line to predict

- Can we smooth out these binned means and close gaps? A model.
- Simplest possible way to relate two variables: a line.

$$
y=m x+b
$$

- Problem: for any line we draw, not all the data is on the line.
- Some points will be above the line, some below.

Using a line to predict

- Can we smooth out these binned means and close gaps? A model.
- Simplest possible way to relate two variables: a line.

$$
y=m x+b
$$

- Problem: for any line we draw, not all the data is on the line.
- Some points will be above the line, some below.
- Need a way to account for chance variation away from the line.

Linear regression model

- Model for the line of best fit:

Linear regression model

- Model for the line of best fit:

$$
Y_{i}=\underbrace{\alpha}_{\text {intercept }}+\underbrace{\beta}_{\text {slope }} \cdot X_{i}+\underbrace{\epsilon_{i}}_{\text {error term }}
$$

Linear regression model

- Model for the line of best fit:

$$
Y_{i}=\underset{\text { intercept }}{\alpha}+\underset{\text { slope }}{\beta} \cdot X_{i}+\underset{\text { error term }}{\epsilon_{i}}
$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit.

Linear regression model

- Model for the line of best fit:

$$
Y_{i}=\underset{\text { intercept }}{\alpha}+\underset{\text { slope }}{\beta} \cdot X_{i}+\underset{\text { errort term }}{\epsilon_{i}}
$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit.
- Chance error ϵ_{i} : accounts for the fact that the line doesn't perfectly fit the data.

Linear regression model

- Model for the line of best fit:

$$
Y_{i}=\underset{\text { intercept }}{\alpha}+\underset{\text { slope }}{\beta} \cdot X_{i}+\underset{\text { errort term }}{\epsilon_{j}}
$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit.
- Chance error ϵ_{i} : accounts for the fact that the line doesn't perfectly fit the data.
- Each observation allowed to be off the regression line.

Linear regression model

- Model for the line of best fit:

$$
Y_{i}=\underset{\text { intercept }}{\alpha}+\underset{\text { slope }}{\beta} \cdot X_{i}+\underset{\text { errort term }}{\epsilon_{i}}
$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit.
- Chance error ϵ_{i} : accounts for the fact that the line doesn't perfectly fit the data.
- Each observation allowed to be off the regression line.
- Chance errors are 0 on average.

Linear regression model

- Model for the line of best fit:

$$
Y_{i}=\underset{\text { intercept }}{\alpha}+\underset{\text { slope }}{\beta} \cdot X_{i}+\underset{\text { errort term }}{\epsilon_{j}}
$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit.
- Chance error ϵ_{i} : accounts for the fact that the line doesn't perfectly fit the data.
- Each observation allowed to be off the regression line.
- Chance errors are 0 on average.
- Useful fiction: this model represents the data generating process

Linear regression model

- Model for the line of best fit:

$$
Y_{i}=\underset{\text { intercept }}{\alpha}+\underset{\text { slope }}{\beta} \cdot X_{i}+\underset{\text { errort term }}{\epsilon_{i}}
$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit.
- Chance error ϵ_{i} : accounts for the fact that the line doesn't perfectly fit the data.
- Each observation allowed to be off the regression line.
- Chance errors are 0 on average.
- Useful fiction: this model represents the data generating process
- George Box: "all models are wrong, some are useful"

Interpreting the regression line

$$
Y_{i}=\alpha+\beta \cdot X_{i}+\epsilon_{i}
$$

- Intercept α : average value of Y when X is 0

Interpreting the regression line

$$
Y_{i}=\alpha+\beta \cdot X_{i}+\epsilon_{i}
$$

- Intercept α : average value of Y when X is 0
- Average weight when I take 0 steps the day prior.

Interpreting the regression line

$$
Y_{i}=\alpha+\beta \cdot X_{i}+\epsilon_{i}
$$

- Intercept α : average value of Y when X is 0
- Average weight when I take 0 steps the day prior.
- Slope β : average change in Y when X increases by one unit.

Interpreting the regression line

$$
Y_{i}=\alpha+\beta \cdot X_{i}+\epsilon_{i}
$$

- Intercept α : average value of Y when X is 0
- Average weight when I take 0 steps the day prior.
- Slope β : average change in Y when X increases by one unit.
- Average decrease in weight for each additional 1,000 steps.

Estimated coefficients

- Parameters: α, β

Estimated coefficients

- Parameters: α, β
- Unknown features of the data-generating process.

Estimated coefficients

- Parameters: α, β
- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.

Estimated coefficients

- Parameters: α, β
- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$

Estimated coefficients

- Parameters: α, β
- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
- An estimate is our best guess about some parameter.

Estimated coefficients

- Parameters: α, β
- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
- An estimate is our best guess about some parameter.
- Regression line: $\widehat{\gamma}=\hat{\alpha}+\hat{\beta} \cdot x$

Estimated coefficients

- Parameters: α, β
- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
- An estimate is our best guess about some parameter.
- Regression line: $\widehat{Y}=\hat{\alpha}+\hat{\beta} \cdot x$
- Average value of Y when X is equal to x.

Estimated coefficients

- Parameters: α, β
- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
- An estimate is our best guess about some parameter.
- Regression line: $\widehat{Y}=\hat{\alpha}+\hat{\beta} \cdot x$
- Average value of Y when X is equal to x.
- Represents the best guess or predicted value of the outcome at x.

Line of best fit

```
ggplot(health, aes(x = steps_lag, y = weight)) +
    geom_point(color = "steelblue1") +
    labs(
        x = "Steps on day prior (in 1000s)",
        y = "Weight",
        title = "Weight and Steps"
    ) +
    geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1
```


Line of best fit

Weight and Steps

Why not this line?

Weight and Steps

Let's understand the prediction error for a line with intercept a and slope b.

Let's understand the prediction error for a line with intercept a and slope b.

Fitted/predicted value for unit i :

$$
a+b \cdot X_{i}
$$

Let's understand the prediction error for a line with intercept a and slope b.

Fitted/predicted value for unit i :

$$
a+b \cdot X_{i}
$$

Preidiction error (residual):

$$
\text { error }=\text { actual }- \text { predicted }=Y_{i}-\left(a+b \cdot X_{i}\right)
$$

Prediction errors/residuals

Weight and Steps

Least squares

- Get these estimates by the least squares method.

Least squares

- Get these estimates by the least squares method.
- Minimize the sum of the squared residuals (SSR):

$$
\operatorname{SSR}=\sum_{i=1}^{n}\left(\text { prediction error }_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-a-b \cdot X_{i}\right)^{2}
$$

Least squares

- Get these estimates by the least squares method.
- Minimize the sum of the squared residuals (SSR):

$$
\operatorname{SSR}=\sum_{i=1}^{n}\left(\text { prediction error }_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-a-b \cdot X_{i}\right)^{2}
$$

- Finds the line that minimizes the magnitude of the prediction errors!

3/ Linear regression in R

Linear regression in R

- R will calculate least squares line for a data set using lm().

Linear regression in R

- R will calculate least squares line for a data set using lm().
- Syntax: lm(y ~ x, data = mydata)

Linear regression in \mathbf{R}

- R will calculate least squares line for a data set using lm().
- Syntax: lm(y ~ x, data = mydata)
- y is the name of the dependent variance

Linear regression in \mathbf{R}

- R will calculate least squares line for a data set using lm().
- Syntax: $\operatorname{lm}(y) \sim x, d a t a=m y d a t a)$
- y is the name of the dependent variance
- x is the name of the independent variable

Linear regression in R

- R will calculate least squares line for a data set using lm().
- Syntax: $\operatorname{lm}(y) \sim x, d a t a=m y d a t a)$
- y is the name of the dependent variance
- x is the name of the independent variable
- mydata is the data.frame where they live

Linear regression in R

- R will calculate least squares line for a data set using lm().
- Syntax: $\operatorname{lm}(y) \sim x, d a t a=m y d a t a)$
- y is the name of the dependent variance
- x is the name of the independent variable
- mydata is the data.frame where they live

```
fit <- lm(weight ~ steps_lag, data = health)
fit
```


Linear regression in \mathbf{R}

- R will calculate least squares line for a data set using lm().
- Syntax: $\operatorname{lm}(y) \sim x, d a t a=m y d a t a)$
- y is the name of the dependent variance
- x is the name of the independent variable
- mydata is the data.frame where they live

```
fit <- lm(weight ~ steps_lag, data = health)
fit
```

```
##
## Call:
## lm(formula = weight ~ steps_lag, data = health)
##
## Coefficients:
## (Intercept) steps_lag
## 170.675 -0.231
```


Linear regression in \mathbf{R}

- R will calculate least squares line for a data set using lm().
- Syntax: $\operatorname{lm}(y) \sim x, d a t a=m y d a t a)$
- y is the name of the dependent variance
- x is the name of the independent variable
- mydata is the data.frame where they live

```
fit <- lm(weight ~ steps_lag, data = health)
fit
```

```
##
## Call:
## lm(formula = weight ~ steps_lag, data = health)
##
## Coefficients:
## (Intercept) steps_lag
## 170.675 -0.231
```


Coefficients

Use coef() to extract estimated coefficients:

```
coef(fit)
```

```
## (Intercept) steps_lag
## 170.675 -0.231
```


Coefficients

Use coef() to extract estimated coefficients:

```
coef(fit)
```

```
## (Intercept) steps_lag
## 170.675 -0.231
```

Interpretation: a 1-unit increase in X (1,000 steps) is associated with a decrease in the average weight of 0.231 pounds.

Coefficients

Use coef() to extract estimated coefficients:

```
coef(fit)
```

```
## (Intercept) steps_lag
## 170.675 -0.231
```

Interpretation: a 1-unit increase in X (1,000 steps) is associated with a decrease in the average weight of 0.231 pounds.

Question: what would this model predict about the change in average weight for a 10,000 step increase in steps?

broom package

The broom package can provide nice summaries of the regression output.
augment () can show fitted values, residuals and other unit-level statistics:

```
library(broom)
augment(fit) |> head()
```

\#\# \# A tibble: 6×8
\#\# weight steps_lag .fitted .resid .hat .sigma .cooksd
\#\# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
\#\# 169. 17.5 167. 1 16.46 $0.00369 \quad 4.68 \quad 5.13 \mathrm{e}-4$

\#\# 2	168	18.4	166	1.57	0.00463	4.68	$2.64 \mathrm{e}-4$

\#\# 3 167. 19.6 166. 1.05 0.00609 4.68 1.54e-4
\#\# 4 168. 10.4 168. -0.0750 0.00217 4.68 2.80e-7
\#\# 5 168. 18.7 166. 1.44 0.00496 4.68 2.38e-4
\#\# 6 166. 9.14 169. -2.27 $0.00296 \quad 4.68 \quad 3.49 \mathrm{e}-4$
\#\# \# ... with 1 more variable: .std.resid <dbl>

Properties of least squares

Least squares line always goes through (\bar{X}, \bar{Y}).

```
ggplot(health, aes(x = steps_lag, y = weight)) +
    geom_point(color = "steelblue1") +
    labs(
        x = "Steps on day prior (in 1000s)",
        y = "Weight",
        title = "Weight and Steps"
    ) +
    geom_hline(yintercept = mean(health$weight), linetype = "dashed") +
    geom_vline(xintercept = mean(health$steps_lag), linetype = "dashed")
    geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1
```

Least squares line always goes through (\bar{X}, \bar{Y}).

Weight and Steps

Properties of least squares line

Estimated slope is related to correlation:

$$
\hat{\beta}=(\text { correlation of } X \text { and } Y) \times \frac{\text { SD of } Y}{\text { SD of } X}
$$

Properties of least squares line

Estimated slope is related to correlation:

$$
\hat{\beta}=(\text { correlation of } X \text { and } Y) \times \frac{\text { SD of } Y}{\text { SD of } X}
$$

Mean of residuals is always 0 .

```
augment(fit) |>
    summarize(mean(.resid))
```

\#\# \# A tibble: 1×1
\#\# ‘mean(.resid)`
\#\# <dbl>
\#\# 1 -1.21e-13

Plotting the residuals

```
augment (fit) |>
    ggplot(aes(x = steps_lag, y = .resid)) +
    geom_point(color = "steelblue1", alpha = 0.75) +
    labs(
        x = "Steps on day prior (in 1000s)",
        y = "Residuals",
        title = "Residual plot"
    ) +
    geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1 .
```


Smoothed graph of averages

Another way to think of the regression line is a smoothed version of the binned means plot:

```
ggplot(health, aes(x = steps_lag, y = weight)) +
    geom_point(color = "steelblue1", alpha = 0.25) +
    labs(
        x = "Steps on day prior (in 1000s)",
        y = "Weight",
        title = "Weight and Steps"
    ) +
    stat_summary_bin(fun = "mean", color = "indianred1", size = 3,
        geom = "point", binwidth = 1) +
    geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1
```


Weight and Steps

