Gov 50: 13. Regression

Matthew Blackwell

Harvard University

- 1. Prediction
- 2. Modeling with a line
- 3. Linear regression in R

1/ Prediction

Predicting weight with activity: health data

Name	Description
date	date of measurements
active_calories	calories burned
steps	number of steps taken (in 1,000s)
weight	weight (lbs)
steps_lag	steps on day before (in 1,000s)
calories_lag	calories burned on day before

• Goal: what's our best guess about Y_i if we know what X_i is?

- Goal: what's our best guess about Y_i if we know what X_i is?
 - what's our best guess about my weight this morning if I know how many steps I took yesterday?

- Goal: what's our best guess about Y_i if we know what X_i is?
 - what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:

- Goal: what's our best guess about Y_i if we know what X_i is?
 - what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:
 - **Dependent/outcome variable**: what we want to predict (weight).

- Goal: what's our best guess about Y_i if we know what X_i is?
 - what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:
 - Dependent/outcome variable: what we want to predict (weight).
 - · Independent/explanatory variable: what we're using to predict (steps).

library(gov50data) health <- drop_na(health)

library(gov50data) health <- drop_na(health)

• Plot the data:

library(gov50data)
health <- drop_na(health)</pre>

• Plot the data:

```
ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelblue1") +
labs(
    x = "Steps on day prior (in 1000s)",
    y = "Weight",
    title = "Weight and Steps"
)
```


• Prediction with access to just Y: average of the Y values.

- Prediction with access to just Y: average of the Y values.
- Prediction with another variable: for any value of *X*, what's the best guess about *Y*?

- Prediction with access to just Y: average of the Y values.
- Prediction with another variable: for any value of *X*, what's the best guess about *Y*?
 - Need a function y = f(x) that maps values of X into predictions.

- Prediction with access to just Y: average of the Y values.
- Prediction with another variable: for any value of *X*, what's the best guess about *Y*?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)

- Prediction with access to just Y: average of the Y values.
- Prediction with another variable: for any value of *X*, what's the best guess about *Y*?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)
- Example: what if did 5,000 steps today? What's my best guess about weight?

Start with looking at a narrow strip of X

Let's find all values that round to 5,000 steps:

health >	
<pre>filter(round(steps_lag) == 5)</pre>	

##	# A	A tibble: 12	2 x 6					
##		date	active.ca	lories	steps	weight	<pre>steps_lag</pre>	calor~1
##		<date></date>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	2015-09-08		1111.	15.2	169.	5.02	410.
##	2	2015-12-12		728.	14.7	167.	5.36	259.
##	3	2015-12-28		430.	8.94	170.	5.19	314
##	4	2016-01-29		475.	8.26	171.	4.95	314.
##	5	2016-02-14		264.	5.42	172.	4.86	297.
##	6	2016-02-15		892.	13.1	171.	5.42	264.
##	7	2016-05-02		627.	11.8	170.	5.04	283.
##	8	2016-06-27		352.	7.21	169.	4.93	212.
##	9	2016-07-22		766.	14.8	167.	4.96	251.
##	10	2016-11-25		452	9.4	173.	5.26	295
##	11	2016-11-28		577.	11.8	171.	4.97	304.
##	12	2016-12-30		621.	12.4	176.	5.42	371.
##	# .	with abb	previated	variab	le name	e 1: cal	lorie lag	

Best prediction about weight for a step count of roughly 5,000 is the average weight for observations around that value:

```
mean_wt_5k_steps <- health |>
  filter(round(steps_lag) == 5) |>
  summarize(mean(weight)) |>
  pull()
mean_wt_5k_steps
```

[1] 171

We can use a stat_summary_bin() to add these binned means all over the scatter plot:

But what happens when we make the bins too small?

```
ggplot(health, aes(x = steps_lag, y = weight)) +
  geom_point(color = "steelblue1", alpha = 0.25) +
  labs(
    x = "Steps on day prior (in 1000s)",
    y = "Weight",
    title = "Weight and Steps"
  ) +
  stat_summary_bin(fun = "mean", color = "indianred1", size = 2,
        geom = "point", binwidth = 0.5) +
  geom_vline(xintercept = c(2.5, 3, 23, 23.5), linetype = "dashed")
```

Gaps and bumps:

2/ Modeling with a line

· Can we smooth out these binned means and close gaps? A model.

- · Can we smooth out these binned means and close gaps? A model.
- Simplest possible way to relate two variables: a line.

- · Can we smooth out these binned means and close gaps? A model.
- Simplest possible way to relate two variables: a line.

• Problem: for any line we draw, not all the data is on the line.

- · Can we smooth out these binned means and close gaps? A model.
- Simplest possible way to relate two variables: a line.

- Problem: for any line we draw, not all the data is on the line.
 - Some points will be above the line, some below.

- · Can we smooth out these binned means and close gaps? A model.
- Simplest possible way to relate two variables: a line.

- Problem: for any line we draw, not all the data is on the line.
 - Some points will be above the line, some below.
 - Need a way to account for **chance variation** away from the line.

Linear regression model

• Model for the line of best fit:

Linear regression model

• Model for the line of best fit:

$$Y_i = \underbrace{\alpha}_{intercept} + \underbrace{\beta}_{slope} \cdot X_i + \underbrace{\epsilon}_i_{error term}$$

Linear regression model

• Model for the line of best fit:

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \cdot X_i + \underbrace{\epsilon_j}_{\text{error term}}$$

Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.

$$Y_i = \underbrace{\alpha}_{intercept} + \underbrace{\beta}_{slope} \cdot X_i + \underbrace{\epsilon_j}_{error term}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.

$$Y_i = \underbrace{\alpha}_{intercept} + \underbrace{\beta}_{slope} \cdot X_i + \underbrace{\epsilon_j}_{error term}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line.

$$Y_i = \underbrace{\alpha}_{intercept} + \underbrace{\beta}_{slope} \cdot X_i + \underbrace{\epsilon_j}_{error term}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line.
 - Chance errors are 0 on average.

$$Y_i = \underbrace{\alpha}_{intercept} + \underbrace{\beta}_{slope} \cdot X_i + \underbrace{\epsilon_j}_{error term}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line.
 - Chance errors are 0 on average.
- Useful fiction: this model represents the **data generating process**

$$Y_i = \underbrace{\alpha}_{intercept} + \underbrace{\beta}_{slope} \cdot X_i + \underbrace{\epsilon_j}_{error term}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line.
 - Chance errors are 0 on average.
- Useful fiction: this model represents the **data generating process**
 - George Box: "all models are wrong, some are useful"

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

• Intercept α : average value of Y when X is 0

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

- Intercept α : average value of Y when X is 0
 - Average weight when I take 0 steps the day prior.

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

- Intercept α : average value of Y when X is 0
 - Average weight when I take 0 steps the day prior.
- **Slope** β : average change in Y when X increases by one unit.

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

- Intercept α : average value of Y when X is 0
 - Average weight when I take 0 steps the day prior.
- **Slope** β : average change in *Y* when *X* increases by one unit.
 - Average decrease in weight for each additional 1,000 steps.

• Parameters: α, β

- Parameters: α, β
 - Unknown features of the data-generating process.

- Parameters: α, β
 - Unknown features of the **data-generating process**.
 - Chance error makes these impossible to observe directly.

- Parameters: α, β
 - Unknown features of the data-generating process.
 - Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$

- Parameters: α, β
 - Unknown features of the data-generating process.
 - Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
 - An **estimate** is our best guess about some parameter.

- Parameters: α, β
 - Unknown features of the data-generating process.
 - Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
 - An **estimate** is our best guess about some parameter.
- Regression line: $\widehat{Y} = \hat{\alpha} + \hat{\beta} \cdot x$

- Parameters: α, β
 - Unknown features of the data-generating process.
 - Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
 - An **estimate** is our best guess about some parameter.
- Regression line: $\widehat{Y} = \hat{\alpha} + \hat{\beta} \cdot x$
 - Average value of Y when X is equal to x.

- Parameters: α, β
 - Unknown features of the data-generating process.
 - Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
 - An estimate is our best guess about some parameter.
- Regression line: $\widehat{Y} = \hat{\alpha} + \hat{\beta} \cdot x$
 - Average value of Y when X is equal to x.
 - Represents the best guess or **predicted value** of the outcome at x.

```
ggplot(health, aes(x = steps_lag, y = weight)) +
  geom_point(color = "steelblue1") +
  labs(
    x = "Steps on day prior (in 1000s)",
    y = "Weight",
    title = "Weight and Steps"
  ) +
  geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1.5)
```

Line of best fit

Why not this line?

Let's understand the **prediction error** for a line with intercept *a* and slope *b*.

Let's understand the **prediction error** for a line with intercept *a* and slope *b*.

Fitted/predicted value for unit *i*:

 $a + b \cdot X_i$

Let's understand the **prediction error** for a line with intercept *a* and slope *b*.

Fitted/predicted value for unit *i*:

 $a + b \cdot X_i$

Preidiction error (residual):

error = actual - predicted = $Y_i - (a + b \cdot X_i)$

Prediction errors/residuals

• Get these estimates by the **least squares method**.

- Get these estimates by the **least squares method**.
- Minimize the sum of the squared residuals (SSR):

$$SSR = \sum_{i=1}^{n} (prediction error_i)^2 = \sum_{i=1}^{n} (Y_i - a - b \cdot X_i)^2$$

- Get these estimates by the **least squares method**.
- Minimize the sum of the squared residuals (SSR):

$$SSR = \sum_{i=1}^{n} (prediction error_i)^2 = \sum_{i=1}^{n} (Y_i - a - b \cdot X_i)^2$$

• Finds the line that minimizes the magnitude of the prediction errors!

• R will calculate least squares line for a data set using lm().

- R will calculate least squares line for a data set using lm().
 - Syntax: lm(y ~ x, data = mydata)

- R will calculate least squares line for a data set using lm().
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance

- R will calculate least squares line for a data set using lm().
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance
 - x is the name of the independent variable

- R will calculate least squares line for a data set using lm().
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance
 - x is the name of the independent variable
 - mydata is the data.frame where they live

- R will calculate least squares line for a data set using lm().
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance
 - x is the name of the independent variable
 - mydata is the data.frame where they live

fit <- lm(weight ~ steps_lag, data = health)
fit</pre>

- R will calculate least squares line for a data set using lm().
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance
 - x is the name of the independent variable
 - mydata is the data.frame where they live

```
fit <- lm(weight ~ steps_lag, data = health)
fit
```

```
##
## Call:
## Call:
## lm(formula = weight ~ steps_lag, data = health)
##
## Coefficients:
## (Intercept) steps_lag
## 170.675 -0.231
```

- R will calculate least squares line for a data set using lm().
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance
 - x is the name of the independent variable
 - mydata is the data.frame where they live

```
fit <- lm(weight ~ steps_lag, data = health)
fit
```

```
##
## Call:
## Call:
## lm(formula = weight ~ steps_lag, data = health)
##
## Coefficients:
## (Intercept) steps_lag
## 170.675 -0.231
```

Use coef() to extract estimated coefficients:

<pre>coef(fit)</pre>			
## (Intercept) ## 170.675	steps_lag -0.231		

Use coef() to extract estimated coefficients:

<pre>coef(fit)</pre>			
## (Intercept) ## 170.675	steps_lag -0.231		

Interpretation: a 1-unit increase in *X* (1,000 steps) is associated with a decrease in the average weight of 0.231 pounds.

Use coef() to extract estimated coefficients:

<pre>coef(fit)</pre>			
## (Intercept) ## 170.675	steps_lag -0.231		

Interpretation: a 1-unit increase in *X* (1,000 steps) is associated with a decrease in the average weight of 0.231 pounds.

Question: what would this model predict about the change in average weight for a 10,000 step increase in steps?

The broom package can provide nice summaries of the regression output.

augment() can show fitted values, residuals and other unit-level statistics:

library(broom)
augment(fit) |> head()

##	#	A tibbl	.e: 6 x 8					
##		weight	steps_lag	.fitted	.resid	.hat	.sigma	.cooksd
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	169.	17.5	167.	2.46	0.00369	4.68	5.13e-4
##	2	168	18.4	166.	1.57	0.00463	4.68	2.64e-4
##	3	167.	19.6	166.	1.05	0.00609	4.68	1.54e-4
##	4	168.	10.4	168.	-0.0750	0.00217	4.68	2.80e-7
##	5	168.	18.7	166.	1.44	0.00496	4.68	2.38e-4
##	6	166.	9.14	169.	-2.27	0.00296	4.68	3.49e-4
##	#	wit	h 1 more v	ariable:	.std.re	esid <dbl< td=""><td>></td><td></td></dbl<>	>	

Least squares line always goes through $(\overline{X}, \overline{Y})$.

```
ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelblue1") +
labs(
    x = "Steps on day prior (in 1000s)",
    y = "Weight",
    title = "Weight and Steps"
) +
geom_hline(yintercept = mean(health$weight), linetype = "dashed") +
geom_vline(xintercept = mean(health$steps_lag), linetype = "dashed") +
geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1.1
```

Least squares line always goes through $(\overline{X}, \overline{Y})$.

Estimated slope is related to correlation:

$$\hat{\beta} = (\text{correlation of } X \text{ and } Y) \times \frac{\text{SD of } Y}{\text{SD of } X}$$

Estimated slope is related to correlation:

$$\hat{\beta} = (\text{correlation of } X \text{ and } Y) \times \frac{\text{SD of } Y}{\text{SD of } X}$$

Mean of residuals is always 0.

augment(fit) |>
 summarize(mean(.resid))

```
## # A tibble: 1 x 1
## `mean(.resid)`
## <dbl>
## 1 -1.21e-13
```

```
augment(fit) |>
ggplot(aes(x = steps_lag, y = .resid)) +
geom_point(color = "steelblue1", alpha = 0.75) +
labs(
    x = "Steps on day prior (in 1000s)",
    y = "Residuals",
    title = "Residual plot"
) +
geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1.5)
```


Another way to think of the regression line is a smoothed version of the binned means plot:

```
ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelblue1", alpha = 0.25) +
labs(
    x = "Steps on day prior (in 1000s)",
    y = "Weight",
    title = "Weight and Steps"
) +
stat_summary_bin(fun = "mean", color = "indianred1", size = 3,
        geom = "point", binwidth = 1) +
geom_smooth(method = "lm", se = FALSE, color = "indianred1", size = 1.5")
```

