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1] Prediction



Predicting my weight

Predicting weight with activity: health data

Name Description

date date of measurements
active_calories calories burned

steps number of steps taken (in 1,000s)
weight weight (lbs)

steps_lag steps on day before (in 1,000s)

calories_lag

calories burned on day before
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Predicting using bivariate relationship

- Goal: what's our best guess about Y; if we know what X; is?
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Predicting using bivariate relationship

- Goal: what's our best guess about Y; if we know what X; is?

+ what's our best guess about my weight this morning if | know how many
steps | took yesterday?

+ Terminology:

- Dependent/outcome variable: what we want to predict (weight).
- Independent/explanatory variable: what we're using to predict (steps).
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+ Load the data:
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Weight data

+ Load the data:

library(gov50data)
health <- drop_na(health)
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Weight data
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Weight data

+ Load the data:

library(gov50data)
health <- drop_na(health)

- Plot the data:

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelbluel”) +
labs(

X = "Steps on day prior (in 1000s)”,
y = "Weight”,
title = "Weight and Steps”

)
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Prediction one variable with another

+ Prediction with access to just Y: average of the Y values.
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Prediction one variable with another

+ Prediction with access to just Y: average of the Y values.

+ Prediction with another variable: for any value of X, what's the best
guess about Y?

+ Need a function y = f(x) that maps values of X into predictions.
+ Machine learning: fancy ways to determine f(x)

+ Example: what if did 5,000 steps today? What's my best guess about
weight?
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Start with looking at a narrow strip of X

Let's find all values that round to 5,000 steps:
health |>

filter(round(steps_lag) == 5)

## # A tibble: 12 x 6

#it date active.calories steps weight steps_lag calor~1
#it <date> <dbl> <dbl> <dbl> <db1l> <db1>
## 1 2015-09-08 1111. 15.2 169. 5.02 410.
## 2 2015-12-12 728. 14.7 167. 5.36 259.
## 3 2015-12-28 430. 8.94 170. 5.19 314
## 4 2016-01-29 475. 8.26 171. 4,95 314.
## 5 2016-02-14 264. 5.42 172. 4.86 297.
## 6 2016-02-15 892. 13.1 171. 5.42 264.
## 7 2016-05-02 627. 11.8 170. 5.04 283.
## 8 2016-06-27 352. 7.21 169. 4.93 212.
## 9 2016-07-22 766. 14.8 167. 4.96 251.
## 10 2016-11-25 452 9.4 173. 5.26 295
## 11 2016-11-28 577. 11.8 171. 4.97 304.
## 12 2016-12-30 621. 12.4 176. 5.42 371.

## # ... with abbreviated variable name 1: calorie_lag
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Best guess about Y for this X

Best prediction about weight for a step count of roughly 5,000 is the average
weight for observations around that value:

mean_wt_5k_steps <- health |[>
filter(round(steps_lag) == 5) |>

summarize(mean(weight)) |[>
pull()
mean_wt_5k_steps

## [1] 171

9/35



Plotting the best guess

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelbluel”, alpha = 0.5) +
labs(

x = "Steps on day prior (in 1000s)”,
y = "Weight”,

title = "Weight and Steps”
) +

geom_vline(xintercept = c(4.5, 5.5), linetype = "dashed”) +
geom_point(aes(x = 5, y = mean_wt_5k_steps), color = "indianred1”,
size = 3)
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Binned means

We can use a stat_summary_bin() to add these binned means all over
the scatter plot:

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”"steelbluel”, alpha = 0.25) +
labs(

x = "Steps on day prior (in 1000s)”,

y = "Weight”,
title = "Weight and Steps”
) +
stat_summary_bin(fun = "mean”, color = "indianredl1”, size
geom = ”"point”, binwidth = 1)
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But what happens when we make the bins too small?

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”"steelbluel”, alpha = 0.25) +
labs(

x = "Steps on day prior (in 1000s)”,
y = "Weight”,

title = "Weight and Steps”
) +
stat_summary_bin(fun = "mean”, color = "indianredl”, size
geom = ”"point”, binwidth = 0.5) +
geom_vline(xintercept c(2.5, 3, 23, 23.5), linetype = "dashed”)
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Gaps and bumps:

Weight and Steps
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2/ Modeling with a line



Using a line to predict

+ Can we smooth out these binned means and close gaps? A model.
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Using a line to predict

+ Can we smooth out these binned means and close gaps? A model.

+ Simplest possible way to relate two variables: a line.
y=mx+b
+ Problem: for any line we draw, not all the data is on the line.

+ Some points will be above the line, some below.
+ Need a way to account for chance variation away from the line.
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Linear regression model

+ Model for the line of best fit:
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Linear regression model

+ Model for the line of best fit:

1

Y, = a + B X+ ¢
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Linear regression model

+ Model for the line of best fit:

Y. = o + ﬁ 'Xi+ €.

! - -
Intercept  sjope error term

- Coefficients/parameters (a, 3): true unknown intercept/slope of the
line of best fit.

- Chance error ¢;: accounts for the fact that the line doesn’t perfectly fit
the data.

+ Each observation allowed to be off the regression line.
+ Chance errors are 0 on average.

- Useful fiction: this model represents the data generating process

- George Box: “all models are wrong, some are useful”
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Interpreting the regression line

Yi = a+B-X+g

+ Intercept a: average value of Y when X is 0
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Interpreting the regression line

Yi = a+p-X +¢

- Intercept a: average value of Y when X is 0

+ Average weight when | take 0 steps the day prior.
- Slope B: average change in Y when X increases by one unit.

+ Average decrease in weight for each additional 1,000 steps.

18/35



Estimated coefficients

- Parameters: o, B
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Estimated coefficients

- Parameters: o, B

+ Unknown features of the data-generating process.
+ Chance error makes these impossible to observe directly.

- Estimates: &, 3
- An estimate is our best guess about some parameter.
- Regression line: Y = &+ - x

+ Average value of Y when X is equal to x.
+ Represents the best guess or predicted value of the outcome at x.
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Line of best fit

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelbluel”) +
labs(
X = "Steps on day prior (in 1000s)”,
y = "Weight”,
title = "Weight and Steps”
) +

geom_smooth(method = ”"1m”, se = FALSE, color = "indianred1”
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Why not this line?

Weight and Steps
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Let’s understand the prediction error for a line with intercept a and slope b.
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Let’s understand the prediction error for a line with intercept a and slope b.

Fitted/predicted value for unit i:

a+b-X;

Preidiction error (residual):

error = actual - predicted = Y, — (a+ b - X))
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Prediction errors/residuals
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- Get these estimates by the least squares method.
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- Get these estimates by the least squares method.

+ Minimize the sum of the squared residuals (SSR):

SSR = Z(prediction error,)? = Z(Y,- —a—b-X)?

i=1 i=1
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- Get these estimates by the least squares method.

+ Minimize the sum of the squared residuals (SSR):

SSR =

(prediction error,)2 = > (Y, —a— b X;)?

i=1 i=1

+ Finds the line that minimizes the magnitude of the prediction errors!
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3/ Linear regression in R



Linear regression in R

« Rwill calculate least squares line for a data set using 1m( ).
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Coefficients

Use coef() to extract estimated coefficients:

## (Intercept) steps_lag
## 170.675 -0.231
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Coefficients

Use coef() to extract estimated coefficients:
coef(fit)

## (Intercept) steps_lag
## 170.675 -0.231

Interpretation: a 1-unit increase in X (1,000 steps) is associated with a
decrease in the average weight of 0.231 pounds.

27/35



Coefficients

Use coef() to extract estimated coefficients:

coef(fit)

## (Intercept) steps_lag
## 170.675 -0.231

Interpretation: a 1-unit increase in X (1,000 steps) is associated with a
decrease in the average weight of 0.231 pounds.

Question: what would this model predict about the change in average weight
for a 10,000 step increase in steps?
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broom package

The broom package can provide nice summaries of the regression output.

augment( ) can show fitted values, residuals and other unit-level statistics:

library(broom)
augment(fit) |> head()

## # A tibble: 6 x 8

##  weight steps_lag .fitted .resid .hat .sigma .cooksd
#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 169. 17.5 167. 2.46 0.00369 4.68 5.13e-4
## 2 168 18.4 166. 1.57 0.00463 4.68 2.64e-4
#t 3 167. 19.6 166. 1.05 0.00609 4.68 1.54e-4
## 4 168. 10.4 168. -0.0750 0.00217 4.68 2.80e-7
## 5 168. 18.7 166. 1.44 0.00496 4.68 2.38e-4
## 6 166. 9.14 169. -2.27 0.00296 4.68 3.49e-4
#it # . with 1 more variable: .std.resid <dbl>

28/35



Properties of least squares

Least squares line always goes through (X, Y).

ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = "steelbluel”) +
labs(
x = "Steps on day prior (in 1000s)”,
y = "Weight”,

title = "Weight and Steps”
) +
geom_hline(yintercept = mean(health$weight), linetype = "dashed”) +
geom_vline(xintercept = mean(health$steps_lag), linetype = "dashed”)
geom_smooth(method = ”"1m”, se = FALSE, color = "indianredl”, size = 1
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Least squares line always goes through (X, Y).

Weight and Steps
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Properties of least squares line

Estimated slope is related to correlation:

- . SD of Y
B = (correlation of X and Y) x D of X
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Properties of least squares line

Estimated slope is related to correlation:

SD of Y
SD of X

B = (correlation of X and Y) x

Mean of residuals is always 0.

augment(fit) |[>
summarize(mean(.resid))

## # A tibble: 1 x 1

#it “mean(.resid)”
#t <dbl>
## 1 -1.21e-13
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Plotting the residuals

augment(fit) [>
ggplot(aes(x = steps_lag, y = .resid)) +
geom_point(color = "steelbluel”, alpha = 0.75) +
labs(

x = "Steps on day prior (in 1000s)”,
y = "Residuals”,
title = "Residual plot”

) +

geom_smooth(method = "1m”, se = FALSE, color = "indianredl1”, size
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Residuals

Residual plot
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Smoothed graph of averages

Another way to think of the regression line is a smoothed version of the
binned means plot:
ggplot(health, aes(x = steps_lag, y = weight)) +
geom_point(color = ”"steelbluel”, alpha = 0.25) +
labs(
x = "Steps on day prior (in 1000s)”,
y = "Weight”,

title = "Weight and Steps”
) +
stat_summary_bin(fun = "mean”, color = "indianred1”, size = 3,
geom = ”"point”, binwidth = 1) +
geom_smooth(method = "1m”, se = FALSE, color = "indianred1”, size
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Weight

Weight and Steps
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