Gov 50: 10. Summarizing Bivariate Relationships

Matthew Blackwell

Harvard University

Roadmap

1. Z-scores and standardization
2. Correlation
3. Writing our own functions

1/ Z-scores and standardization

COVID vaccination rates and votes

library(tidyverse)
library(gov50data)
covid_votes

\#\#		fips	county	state	one_d~1	one_d~2	boost~3	dem_p~4
\#\#		<chr>	<chr>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\#	1	26039	Crawford Cou~	MI	55.7	77.3	31.2	43.8
\#\#	2	40015	Caddo County	OK	83.3	95	30.3	46.4
\#\#	3	17007	Boone County	IL	71.1	94.5	35.1	41.8
\#\#	4	12055	Highlands Co~	FL	68.9	93.7	24.7	40.3
\#\#	5	34029	Ocean County	NJ	71	95	32.1	47.2
\#\#	6	01067	Henry County	AL	58.5	85.5	18.2	40.1
\#\#	7	27037	Dakota County	MN	81	95	49.5	46.9
\#\#	8	27115	Pine County	MN	56.5	85	31.7	47.0
\#\#	9	51750	Radford city	VA	41.5	73.8	1.79	46.4
\#\#	10	22009	Avoyelles Pa~	LA	59.7	80.1	21.9	45.7

\#\# \# ... with 3,104 more rows, 1 more variable:
\#\# \# dem_pct_2020 <dbl>, and abbreviated variable names
\#\# \# 1: one_dose_5plus_pct, 2: one_dose_65plus_pct,
\#\# \# 3: booster_5plus_pct, 4: dem_pct_2000

Is 60\% vaccinated a lot?

How large is large?

- How large 60% vaccinated is depends on the distribution!

How large is large?

- How large 60% vaccinated is depends on the distribution!
- Clear to see from the histogram

How large is large?

- How large 60% vaccinated is depends on the distribution!
- Clear to see from the histogram
- Middling for the $5+$ group, but very low for the $65+$ group.

How large is large?

- How large 60% vaccinated is depends on the distribution!
- Clear to see from the histogram
- Middling for the 5+ group, but very low for the 65+ group.
- Can we transform the values of our variables to be common units?

How large is large?

- How large 60% vaccinated is depends on the distribution!
- Clear to see from the histogram
- Middling for the 5+ group, but very low for the 65+ group.
- Can we transform the values of our variables to be common units?
- Yes, with two transformations:

How large is large?

- How large 60% vaccinated is depends on the distribution!
- Clear to see from the histogram
- Middling for the 5+ group, but very low for the 65+ group.
- Can we transform the values of our variables to be common units?
- Yes, with two transformations:
- Centering: subtract the mean of the variable from each value.

How large is large?

- How large 60% vaccinated is depends on the distribution!
- Clear to see from the histogram
- Middling for the 5+ group, but very low for the 65+ group.
- Can we transform the values of our variables to be common units?
- Yes, with two transformations:
- Centering: subtract the mean of the variable from each value.
- Scaling: dividing deviations from the mean by the standard deviation.

Original distributions

Centered distributions

Centered and scaled distributions

Z-scores

- Centering tells us immediately if a value is above or below the mean.
- Centering tells us immediately if a value is above or below the mean.
- Scaling tells us how many standard deviations away from the mean it is.

Z-scores

- Centering tells us immediately if a value is above or below the mean.
- Scaling tells us how many standard deviations away from the mean it is.
- Combine them with the \mathbf{z}-score transformation:

$$
\text { z-score of } x_{i}=\frac{x_{i}-\text { mean of } x}{\text { standard deviation of } x}
$$

Z-scores

- Centering tells us immediately if a value is above or below the mean.
- Scaling tells us how many standard deviations away from the mean it is.
- Combine them with the \mathbf{z}-score transformation:

$$
\text { z-score of } x_{i}=\frac{x_{i}-\text { mean of } x}{\text { standard deviation of } x}
$$

- Useful heuristic: data more than 3 SDs away from mean are rare.

z-score example

```
covid_votes |>
    mutate(one_dose_centered = one_dose_5plus_pct -
        mean(one_dose_5plus_pct, na.rm = TRUE)) |>
    select(fips:state, one_dose_5plus_pct, one_dose_centered)
```

\#\# \# A tibble: 3,114 x 5
\#\# fips county state one_dose_5plus_pct one_dos~1
\#\# <chr> <chr> <chr> <dbl> <dbl>
\#\# 1 26039 Crawford County MI 55.7 -7.35
\#\# 240015 Caddo County OK 83.3 20.2
\#\# 317007 Boone County IL 71.1 8.05
\#\# 412055 Highlands County FL $68.9 \quad 5.85$
\#\# 534029 Ocean County NJ $71 \quad 7.95$
\#\# 601067 Henry County AL 58.5 -4.55
\#\# 727037 Dakota County MN
\#\# 827115 Pine County MN
\#\# 951750 Radford city VA
\#\# 1022009 Avoyelles Parish LA
\#\# \# ... with 3,104 more rows, and abbreviated variable name
\#\# \# 1: one_dose_centered

z-score example

```
covid_votes |>
    mutate(
        one_dose_z =
        (one_dose_5plus_pct - mean(one_dose_5plus_pct, na.rm = TRUE)) /
        sd(one_dose_5plus_pct, na.rm = TRUE)) |>
select(fips:state, one_dose_5plus_pct, one_dose_z)
```

\#\# \#	A tibble: $3,114 \times 5$			
\#\#	fips county	state one_dose_5plus_pct	one_dos~1	
\#\#	<chr>	<chr>	<chr>	<dbl>

\#\# \# ... with 3,104 more rows, and abbreviated variable name
\#\# \# 1: one_dose_z

2/ Correlation

Correlation

- How do variables move together on average?

Correlation

- How do variables move together on average?
-When x_{i} is big, what is y_{i} likely to be?

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small
- High magnitude of correlation: data cluster tightly around a line.

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small
- High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(z \text {-score for } x_{i}\right) \times\left(z \text {-score for } y_{i}\right)\right]
$$

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small
- High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(z \text {-score for } x_{i}\right) \times\left(z \text {-score for } y_{i}\right)\right]
$$

- Interpretation:

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small
- High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(z \text {-score for } x_{i}\right) \times\left(z \text {-score for } y_{i}\right)\right]
$$

- Interpretation:
- Correlation is between -1 and 1

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small
- High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(z \text {-score for } x_{i}\right) \times\left(z \text {-score for } y_{i}\right)\right]
$$

- Interpretation:
- Correlation is between -1 and 1
- Correlation of 0 means no linear association.

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small
- High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(z \text {-score for } x_{i}\right) \times\left(z \text {-score for } y_{i}\right)\right]
$$

- Interpretation:
- Correlation is between -1 and 1
- Correlation of 0 means no linear association.
- Positive correlations \rightsquigarrow positive associations.

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small
- High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(z \text {-score for } x_{i}\right) \times\left(z \text {-score for } y_{i}\right)\right]
$$

- Interpretation:
- Correlation is between -1 and 1
- Correlation of 0 means no linear association.
- Positive correlations \rightsquigarrow positive associations.
- Negative correlations \rightsquigarrow negative associations.

Correlation

- How do variables move together on average?
- When x_{i} is big, what is y_{i} likely to be?
- Positive correlation: when x_{i} is big, y_{i} is also big
- Negative correlation: when x_{i} is big, y_{i} is small
- High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(z \text {-score for } x_{i}\right) \times\left(z \text {-score for } y_{i}\right)\right]
$$

- Interpretation:
- Correlation is between -1 and 1
- Correlation of 0 means no linear association.
- Positive correlations \rightsquigarrow positive associations.
- Negative correlations \rightsquigarrow negative associations.
- Closer to -1 or 1 means stronger association.

Correlation intuition

Correlation intuition

- Large values of X tend to occur with large values of Y :

Correlation intuition

- Large values of X tend to occur with large values of Y :
- $\left(z\right.$-score for $\left.x_{i}\right) \times\left(z\right.$-score for $\left.y_{i}\right)=($ pos. num. $) \times($ pos. num $)=+$

Correlation intuition

- Large values of X tend to occur with large values of Y :
- $\left(z\right.$-score for $\left.x_{i}\right) \times\left(z\right.$-score for $\left.y_{i}\right)=($ pos. num. $) \times($ pos. num $)=+$
- Small values of X tend to occur with small values of Y :

Correlation intuition

- Large values of X tend to occur with large values of Y :
- $\left(z\right.$-score for $\left.x_{i}\right) \times\left(z\right.$-score for $\left.y_{i}\right)=($ pos. num. $) \times($ pos. num $)=+$
- Small values of X tend to occur with small values of Y :
- $\left(\mathrm{z}\right.$-score for $\left.x_{i}\right) \times\left(\mathrm{z}\right.$-score for $\left.y_{i}\right)=($ neg. num. $) \times($ neg. num $)=+$

Correlation intuition

- Large values of X tend to occur with large values of Y :
- $\left(z\right.$-score for $\left.x_{i}\right) \times\left(z\right.$-score for $\left.y_{i}\right)=($ pos. num. $) \times($ pos. num $)=+$
- Small values of X tend to occur with small values of Y :
- $\left(\mathrm{z}\right.$-score for $\left.x_{i}\right) \times\left(\mathrm{z}\right.$-score for $\left.y_{i}\right)=($ neg. num. $) \times($ neg. num $)=+$
- If these dominate \rightsquigarrow positive correlation.

Correlation intuition

- Large values of X tend to occur with small values of Y :

Correlation intuition

- Large values of X tend to occur with small values of Y :
- $\left(z\right.$-score for $\left.x_{i}\right) \times\left(z\right.$-score for $\left.y_{i}\right)=($ pos. num. $) \times($ neg. num $)=-$

Correlation intuition

- Large values of X tend to occur with small values of Y :
- $\left(z\right.$-score for $\left.x_{i}\right) \times\left(z\right.$-score for $\left.y_{i}\right)=($ pos. num. $) \times($ neg. num $)=-$
- Small values of X tend to occur with large values of Y :

Correlation intuition

- Large values of X tend to occur with small values of Y :
- $\left(\mathrm{z}\right.$-score for $\left.x_{i}\right) \times\left(\mathrm{z}\right.$-score for $\left.y_{i}\right)=($ pos. num. $) \times($ neg. num $)=-$
- Small values of X tend to occur with large values of Y :
- $\left(\mathrm{z}\right.$-score for $\left.x_{i}\right) \times\left(\mathrm{z}\right.$-score for $\left.y_{i}\right)=($ neg. num. $) \times($ pos. num $)=-$

Correlation intuition

- Large values of X tend to occur with small values of Y :
- $\left(\mathrm{z}\right.$-score for $\left.x_{i}\right) \times\left(\mathrm{z}\right.$-score for $\left.y_{i}\right)=($ pos. num. $) \times($ neg. num $)=-$
- Small values of X tend to occur with large values of Y :
- $\left(\mathrm{z}\right.$-score for $\left.x_{i}\right) \times\left(\mathrm{z}\right.$-score for $\left.y_{i}\right)=($ neg. num. $) \times($ pos. num $)=-$
- If these dominate \rightsquigarrow negative correlation.

Correlation examples

Properties of correlation coefficient

- Correlation measures linear association.

Properties of correlation coefficient

- Correlation measures linear association.
- Order doesn't matter: $\operatorname{cor}(x, y)=\operatorname{cor}(y, x)$

Properties of correlation coefficient

- Correlation measures linear association.
- Order doesn't matter: $\operatorname{cor}(x, y)=\operatorname{cor}(y, x)$
- Not affected by changes of scale:

Properties of correlation coefficient

- Correlation measures linear association.
- Order doesn't matter: $\operatorname{cor}(x, y)=\operatorname{cor}(y, x)$
- Not affected by changes of scale:
- $\operatorname{cor}(x, y)=\operatorname{cor}(a x+b, c y+d)$

Properties of correlation coefficient

- Correlation measures linear association.
- Order doesn't matter: $\operatorname{cor}(x, y)=\operatorname{cor}(y, x)$
- Not affected by changes of scale:
- $\operatorname{cor}(x, y)=\operatorname{cor}(a x+b, c y+d)$
- Celsius vs. Fahreneheit; dollars vs. pesos; cm vs. in.

All 4 relationships have 0.816 correlation

Correlation in R

Use the cor() function:
cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2020)
\#\# [1] NA

Correlation in \mathbf{R}

Use the cor() function:
cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2020)

```
## [1] NA
```

Missing values: set the use = "pairwise" \rightarrow available case analysis
cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2020, use = "pairwise")
\#\# [1] 0.666

Comparing correlations

```
covid_votes |>
    ggplot(aes(x = dem_pct_2020, y = one_dose_5plus_pct)) +
geom_point(alpha = 0.5)
```



```
cor(covid_votes$one_dose_5plus_pct, covid_votes$dem_pct_2020,
    use = "pairwise")
```

\#\# [1] 0.666

Comparing correlations

```
covid_votes |>
    ggplot(aes(x = dem_pct_2000, y = one_dose_5plus_pct)) +
geom_point(alpha = 0.5)
```



```
cor(covid_votes$one_dose_5plus_pct, covid_votes$dem_pct_2000,
    use = "pairwise")
```

\#\# [1] 0.394

Comparing correlations

```
covid_votes |>
    ggplot(aes(x = dem_pct_2000, y = one_dose_65plus_pct)) +
geom_point(alpha = 0.5)
```



```
cor(covid_votes$one_dose_65plus_pct, covid_votes$dem_pct_2000,
    use = "pairwise")
```

\#\# [1] 0.263

3/ Writing our own functions

Why write functions?

Copy-pasting code tedious and prone to failure:

```
covid_votes |>
mutate(
    one_dose_5p_z =
    (one_dose_5plus_pct - mean(one_dose_5plus_pct, na.rm = TRUE)) /
    sd(one_dose_5plus_pct, na.rm = TRUE),
    one_dose_65p_z =
    (one_dose_65plus_pct - mean(one_dose_65plus_pct, na.rm = TRUE))
    sd(one_dose_65plus_pct, na.rm = TRUE),
    booster_z =
    (booster_5plus_pct - mean(booster_5plus_pct, na.rm = TRUE)) /
    sd(booster_5plus_pct, na.rm = TRUE),
    dem_pct_2000_z =
    (dem_pct_2000 - mean(dem_pct_2000, na.rm = TRUE)) /
    sd(dem_pct_2000, na.rm = TRUE),
    dem_pct_2020_z =
    (dem_pct_2020 - mean(dem_pct_2020, na.rm = TRUE)) /
    sd(dem_pct_2020, na.rm = TRUE)
```

)

Writing a new function

Notice that all of the mutations follow the same template:

Only one thing varies: the column of data, represented with

Components of a function

We create functions like so:

```
name <- function(arguments) {
    body
}
```


Components of a function

We create functions like so:

```
name <- function(arguments) {
    body
}
```

Three components:

1. Name: the name of the function that we'll use to call it. Maybe z_score?

Components of a function

We create functions like so:

```
name <- function(arguments) {
    body
}
```

Three components:

1. Name: the name of the function that we'll use to call it. Maybe z_score?
2. Arguments: things that we want to vary across calls of our function. We'll use x.

Components of a function

We create functions like so:

```
name <- function(arguments) {
    body
}
```

Three components:

1. Name: the name of the function that we'll use to call it. Maybe z_score?
2. Arguments: things that we want to vary across calls of our function. We'll use x.
3. Body: the code that the function performs.

Our first function

Convert our template to a function:

```
z_score <- function(x) {
    (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}
```


Our first function

Convert our template to a function:

```
z_score <- function(x) {
    (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}
```

Check that it seems to work:

```
z_score(c(1,2, 3, 4, 5))
## [1] -1.265 -0.632 0.000 0.632 1.265
```


Cleaning up our code

```
covid_votes |>
    mutate(
        one_dose_5p_z = z_score(one_dose_5plus_pct),
        one_dose_65p_z = z_score(one_dose_65plus_pct),
        booster_z = z_score(booster_5plus_pct),
    dem_pct_2000_z = z_score(dem_pct_2000),
    dem_pct_2020_z = z_score(dem_pct_2020)
    )
```


across() function

If we want to replace our variables with z-scores, we can use the across() function to perform many mutations at once:

```
covid_votes |>
    mutate(across(one_dose_5plus_pct:dem_pct_2020, z_score))
```

\#\# \# A tibble: 3,114 x 8
\#\# fips county state one_d~1 one_d~2 boost~3 dem_p~4
\#\# <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
\#\# 1 26039 Crawford Cou~ MI -0.508 -0.829 0.5310 .340
\#\# 240015 Caddo County OK $\quad 1.40 \quad 0.843 \quad 0.439 \quad 0.556$
\#\# 317007 Boone County IL $\quad 0.556 \quad 0.795 \quad 0.9270 .163$
\#\# 412055 Highlands Co~ FL $0.404 \quad 0.720 \quad-0.1350 .0402$
\#\# 5 34029 Ocean County NJ $\quad 0.549 \quad 0.843 \quad 0.62300 .624$
\#\# 601067 Henry County AL $\quad-0.314-0.0545-0.7990 .0255$
\#\# 727037 Dakota County MN $\quad 1.24 \quad 0.843 \quad 2.40 \quad 0.598$
\#\# 827115 Pine County MN -0.452 $-0.102 \quad 0.577 \quad 0.612$
\#\# 951750 Radford city VA -1.49 -1.16 $\quad-2.47 \quad 0.556$
\#\# 1022009 Avoyelles Pa~ LA -0.231 -0.564 $-0.424 \quad 0.501$
\#\# \# ... with 3,104 more rows, 1 more variable:
\#\# \# dem_pct_2020 <dbl>, and abbreviated variable names
\#\# \# 1: one_dose_5plus_pct, 2: one_dose_65plus_pct,

Alternative approach

We could also target all the numeric variables:

```
covid_votes |>
    mutate(across(where(is.numeric), z_score))
```

\#\# \# A tibble: $3,114 \times 8$
\#\# fips county state one_d~1 one_d~2 boost~3 dem_p~4
\#\# <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
\#\# 1 26039 Crawford Cou~ MI -0.508 -0.829 0.5310 .340
\#\# 240015 Caddo County OK $\quad 1.40 \quad 0.843 \quad 0.439 \quad 0.556$
\#\# 317007 Boone County IL $\quad 0.556 \quad 0.795 \quad 0.927 \quad 0.163$
\#\# 412055 Highlands Co~ FL $\quad 0.404 \quad 0.720 \quad-0.1350 .0402$
\#\# 5 34029 Ocean County NJ $\quad 0.549 \quad 0.843 \quad 0.62300 .624$

$$
\text { \#\# } 601067 \text { Henry County AL } \quad-0.314-0.0545 \quad-0.799 \quad 0.0255
$$

$$
\begin{array}{llllll}
\text { \#\# } 727037 \text { Dakota County MN } & 1.24 & 0.843 & 2.40 & 0.598
\end{array}
$$

$$
\begin{array}{lllllll}
\text { \#\# } 827115 \text { Pine County MN } & -0.452 & -0.102 & 0.577 & 0.612
\end{array}
$$

$$
\begin{array}{lllllll}
\text { \#\# } 951750 \text { Radford city VA } & -1.49 & -1.16 & -2.47 & 0.556
\end{array}
$$

$$
\text { \#\# } 1022009 \text { Avoyelles Pa~ LA } \quad-0.231 \text {-0.564 } \quad-0.424 \quad 0.501
$$

\#\# \# ... with 3,104 more rows, 1 more variable:
\#\# \# dem_pct_2020 <dbl>, and abbreviated variable names
\#\# \# 1: one_dose_5plus_pct, 2: one_dose_65plus_pct,
\#\# \# 3: booster_5plus_pct, 4: dem_pct_2000

Alternative approach

We could also target only the first dose variables:

```
covid_votes |>
    mutate(across(starts_with("one_dose"), z_score))
```

\#\# \# A tibble: $3,114 \times 8$

\#\#		fips	county	state	one_d~1	one_d~2	t~3	dem_p~4
\#\#		<chr>	<chr>	<chr>	<dbl>	<dbl>	<dbl>	bl>
\#\#	1	26039	Crawford Cou~	MI	-0.508	-0.829	31.2	43.8
\#\#	2	40015	Caddo County	OK	1.40	0.843	30.3	46.4
\#\#	3	17007	Boone County	IL	0.556	0.795	35.1	41.8
\#\#	4	12055	Highlands Co~	FL	0.404	0.720	24.7	40.3
\#\#	5	34029	Ocean County	NJ	0.549	0.843	32.1	47.2
\#\#	6	01067	Henry County	AL	-0.314	-0.0545	18.2	40.1
\#\#	7	27037	Dakota County	MN	1.24	0.843	49.5	46.9
\#\#	8	27115	Pine County	MN	-0.452	-0.102	31.7	47.0
\#\#	9	51750	Radford city	VA	-1.49	-1.16	1.79	46.4
\#\#	10	22009	Avoyelles Pa~	LA	-0.231	-0.564	21.9	45.7

\#\# \# ... with 3,104 more rows, 1 more variable:
\#\# \# dem_pct_2020 <dbl>, and abbreviated variable names
\#\# \# 1: one_dose_5plus_pct, 2: one_dose_65plus_pct,
\#\# \# 3: booster_5plus_pct, 4: dem_pct_2000

Adding arguments to our function

What if we want to be able to control na.rm in the calls to mean() and sd() in our z_score function? Add an argument!

```
z_score2 <- function(x, na.rm = FALSE) {
    (x - mean(x, na.rm = na.rm)) / sd(x, na.rm = na.rm)
}
```

head(z_score2(covid_votes\$one_dose_5plus_pct))
\#\# [1] NA NA NA NA NA NA
head(z_score2(covid_votes\$one_dose_5plus_pct, na.rm = TRUE))
\#\# [1] -0.508 $1.398 \quad 0.556 \quad 0.404 \quad 0.549 \quad-0.314$

