Gov 50: 10. Summarizing Bivariate Relationships

Matthew Blackwell

Harvard University

- 1. Z-scores and standardization
- 2. Correlation
- 3. Writing our own functions

1/ Z-scores and standardization

COVID vaccination rates and votes

library(tidyverse)
library(gov50data)
covid_votes

A tibble: 3,114 x 8

##	ŧ		fips	county	state	one_d~1	one_d~2	boost~3	dem_p~4		
##	‡		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		
##	# :	1	26039	Crawford Cou~	MI	55.7	77.3	31.2	43.8		
##	# 2	2	40015	Caddo County	OK	83.3	95	30.3	46.4		
##	# :	3	17007	Boone County	IL	71.1	94.5	35.1	41.8		
##	‡ 4	4	12055	Highlands Co~	FL	68.9	93.7	24.7	40.3		
##	# !	5	34029	Ocean County	NJ	71	95	32.1	47.2		
##	‡ (6	01067	Henry County	AL	58.5	85.5	18.2	40.1		
##	ŧ :	7	27037	Dakota County	MN	81	95	49.5	46.9		
##	‡ 8	8	27115	Pine County	MN	56.5	85	31.7	47.0		
##	‡ 9	9	51750	Radford city	VA	41.5	73.8	1.79	46.4		
##	# 1 (0	22009	Avoyelles Pa~	LA	59.7	80.1	21.9	45.7		
#4	# # with 3,104 more rows, 1 more variable:										
##	# #	<pre># dem_pct_2020 <dbl>, and abbreviated variable names</dbl></pre>									
#4	# #	<pre># 1: one_dose_5plus_pct, 2: one_dose_65plus_pct,</pre>									
#4	# #	<pre># 3: booster_5plus_pct, 4: dem_pct_2000</pre>									

Is 60% vaccinated a lot?

• How large 60% vaccinated is depends on the distribution!

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group.

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group.
- Can we transform the values of our variables to be **common units**?

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group.
- Can we transform the values of our variables to be **common units**?
- Yes, with two transformations:

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group.
- Can we transform the values of our variables to be **common units**?
- Yes, with two transformations:
 - **Centering**: subtract the mean of the variable from each value.

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group.
- Can we transform the values of our variables to be **common units**?
- Yes, with two transformations:
 - **Centering**: subtract the mean of the variable from each value.
 - Scaling: dividing deviations from the mean by the standard deviation.

Original distributions

Centered distributions

Centered and scaled distributions

• Centering tells us immediately if a value is above or below the mean.

- Centering tells us immediately if a value is above or below the mean.
- Scaling tells us how many standard deviations away from the mean it is.

- Centering tells us immediately if a value is above or below the mean.
- Scaling tells us how many standard deviations away from the mean it is.
- Combine them with the **z-score** transformation:

z-score of
$$x_i = \frac{x_i - \text{mean of } x}{\text{standard deviation of } x}$$

- Centering tells us immediately if a value is above or below the mean.
- Scaling tells us how many standard deviations away from the mean it is.
- Combine them with the **z-score** transformation:

z-score of
$$x_i = \frac{x_i - \text{mean of } x}{\text{standard deviation of } x}$$

• Useful heuristic: data more than 3 SDs away from mean are rare.

z-score example

## # A tibble: 3,114 x 5										
##		fips	county	state	one_dose_5p	lus_pct d	one_dos~1			
##		<chr></chr>	<chr></chr>	<chr></chr>		<dbl></dbl>	<dbl></dbl>			
##	1	26039	Crawford County	MI		55.7	-7.35			
##	2	40015	Caddo County	ОК		83.3	20.2			
##	3	17007	Boone County	IL		71.1	8.05			
##	4	12055	Highlands County	FL		68.9	5.85			
##	5	34029	Ocean County	NJ		71	7.95			
##	6	01067	Henry County	AL		58.5	-4.55			
##	7	27037	Dakota County	MN		81	17.9			
##	8	27115	Pine County	MN		56.5	-6.55			
##	9	51750	Radford city	VA		41.5	-21.6			
##	10	22009	Avoyelles Parish	LA		59.7	-3.35			
##	# .	wit	ch 3,104 more rows	s, and	abbreviated	variable	e name			
##	#	1: or	ne_dose_centered							

z-score example

```
covid_votes |>
  mutate(
    one_dose_z =
        (one_dose_5plus_pct - mean(one_dose_5plus_pct, na.rm = TRUE)) /
        sd(one_dose_5plus_pct, na.rm = TRUE)) |>
        select(fips:state, one dose 5plus pct, one dose z)
```

```
## # A tibble: 3,114 x 5
##
  fips county state one_dose_5plus_pct one_dos~1
## <chr> <chr>
                       <chr>
                                         1 26039 Crawford County MI
                                         55.7 -0.508
##
##
   2 40015 Caddo County OK
                                         83.3 1.40
##
   3 17007 Boone County IL
                                         71.1 0.556
                                         68.9 0.404
##
   4 12055 Highlands County FL
##
   5 34029 Ocean County
                        NJ
                                         71 0.549
                                         58.5 -0.314
##
   6 01067 Henry County AL
##
  7 27037 Dakota County MN
                                         81 1.24
##
  8 27115 Pine County MN
                                         56.5 -0.452
## 9 51750 Radford city VA
                                         41.5 -1.49
## 10 22009 Avoyelles Parish LA
                                         59.7 -0.231
## # ... with 3,104 more rows, and abbreviated variable name
## # 1: one dose z
```

• How do variables move together on average?

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small

- · How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.

- · How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$rac{1}{n-1}\sum_{i=1}^n \left[(extsf{z-score for } x_i) imes (extsf{z-score for } y_i)
ight]$$

- · How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}\left[\left(\text{z-score for } x_{i}\right)\times\left(\text{z-score for } y_{i}\right)\right]$$

Interpretation:

- · How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}\left[\left(\text{z-score for } x_{i}\right)\times\left(\text{z-score for } y_{i}\right)\right]$$

- Interpretation:
 - Correlation is between -1 and 1

- · How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}\left[\left(\text{z-score for } x_{i}\right)\times\left(\text{z-score for } y_{i}\right)\right]$$

- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association.

- · How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}\left[\left(\text{z-score for } x_{i}\right)\times\left(\text{z-score for } y_{i}\right)\right]$$

- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association.
 - Positive correlations \rightsquigarrow positive associations.

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}\left[\left(\text{z-score for } x_{i}\right)\times\left(\text{z-score for } y_{i}\right)\right]$$

- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association.
 - Positive correlations \rightsquigarrow positive associations.
 - Negative correlations \leadsto negative associations.

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}\left[\left(\text{z-score for } x_{i}\right)\times\left(\text{z-score for } y_{i}\right)\right]$$

- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association.
 - Positive correlations \rightsquigarrow positive associations.
 - Negative correlations \rightsquigarrow negative associations.
 - Closer to -1 or 1 means stronger association.

Correlation intuition

Correlation intuition

• Large values of X tend to occur with large values of Y:

- Large values of X tend to occur with large values of Y:
 - (z-score for x_i) × (z-score for y_i) = (pos. num.) × (pos. num) = +

- Large values of X tend to occur with large values of Y:
 - (z-score for $x_i) \times (z$ -score for $y_i) = (pos. num.) \times (pos. num) = +$
- Small values of X tend to occur with small values of Y:

- Large values of X tend to occur with large values of Y:
 - (z-score for $x_i) \times (z$ -score for $y_i) = (pos. num.) \times (pos. num) = +$
- Small values of X tend to occur with small values of Y:
 - (z-score for x_i) × (z-score for y_i) = (neg. num.) × (neg. num) = +

- Large values of X tend to occur with large values of Y:
 - (z-score for x_i) × (z-score for y_i) = (pos. num.) × (pos. num) = +
- Small values of X tend to occur with small values of Y:
 - (z-score for x_i) × (z-score for y_i) = (neg. num.) × (neg. num) = +
- If these dominate \rightsquigarrow positive correlation.

• Large values of X tend to occur with small values of Y:

- Large values of X tend to occur with small values of Y:
 - (z-score for x_i) × (z-score for y_i) = (pos. num.) × (neg. num) = -

- Large values of X tend to occur with small values of Y:
 - (z-score for $x_i) \times (z$ -score for $y_i) = (pos. num.) \times (neg. num) = -$
- Small values of X tend to occur with large values of Y:

- Large values of X tend to occur with small values of Y:
 - (z-score for $x_i) \times (z$ -score for $y_i) = (pos. num.) \times (neg. num) = -$
- Small values of X tend to occur with large values of Y:
 - (z-score for x_i) × (z-score for y_i) = (neg. num.) × (pos. num) = -

- Large values of X tend to occur with small values of Y:
 - (z-score for $x_i) \times (z$ -score for $y_i) = (pos. num.) \times (neg. num) = -$
- Small values of X tend to occur with large values of Y:
 - (z-score for x_i) × (z-score for y_i) = (neg. num.) × (pos. num) = -
- If these dominate \leadsto negative correlation.

Correlation examples

• Correlation measures **linear** association.

- Correlation measures **linear** association.
- Order doesn't matter: cor(x,y) = cor(y,x)

- Correlation measures **linear** association.
- Order doesn't matter: cor(x,y) = cor(y,x)
- Not affected by changes of scale:

- Correlation measures **linear** association.
- Order doesn't matter: cor(x,y) = cor(y,x)
- Not affected by changes of scale:
 - cor(x,y) = cor(ax+b, cy+d)

- Correlation measures **linear** association.
- Order doesn't matter: cor(x,y) = cor(y,x)
- Not affected by changes of scale:
 - cor(x,y) = cor(ax+b, cy+d)
 - Celsius vs. Fahreneheit; dollars vs. pesos; cm vs. in.

All 4 relationships have 0.816 correlation

Use the cor() function:

cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2020)

[1] NA

Use the cor() function:

cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2020)

[1] NA

Missing values: set the use = "pairwise" \rightarrow available case analysis

cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2020, use = "pairwise")

Comparing correlations

covid_votes |>
 ggplot(aes(x = dem_pct_2020, y = one_dose_5plus_pct)) +
 geom_point(alpha = 0.5)

cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2020, use = "pairwise")

Comparing correlations

covid_votes |>
 ggplot(aes(x = dem_pct_2000, y = one_dose_5plus_pct)) +
 geom point(alpha = 0.5)

Comparing correlations

covid_votes |>
 ggplot(aes(x = dem_pct_2000, y = one_dose_65plus_pct)) +
 geom_point(alpha = 0.5)

3/ Writing our own functions

Why write functions?

Copy-pasting code tedious and prone to failure:

```
covid_votes |>
 mutate(
    one dose 5p z =
      (one_dose_5plus_pct - mean(one_dose_5plus_pct, na.rm = TRUE)) /
      sd(one dose 5plus pct, na.rm = TRUE),
    one dose 65p z =
      (one_dose_65plus_pct - mean(one_dose_65plus_pct, na.rm = TRUE)) /
      sd(one dose 65plus pct, na.rm = TRUE),
    booster z =
      (booster 5plus pct - mean(booster 5plus pct, na.rm = TRUE)) /
      sd(booster 5plus pct, na.rm = TRUE),
    dem pct 2000 z =
      (dem pct 2000 - mean(dem pct 2000, na.rm = TRUE)) /
      sd(dem pct 2000, na.rm = TRUE),
    dem pct_2020_z =
      (dem_pct_2020 - mean(dem_pct_2020, na.rm = TRUE)) /
      sd(dem_pct_2020, na.rm = TRUE)
```

Notice that all of the mutations follow the same template:

(- mean(, na.rm = TRUE)) / sd(, na.rm = TRUE)

Only one thing varies: the column of data, represented with

We create functions like so:

<pre>name <- function(arguments) {</pre>	
body	
}	

We create functions like so:

<pre>name <- function(arguments) {</pre>	
body	
}	

Three components:

Name: the name of the function that we'll use to call it. Maybe z_score?

We create functions like so:

name	<-	<pre>function(arguments)</pre>		
boo	dy			
}				

Three components:

- Name: the name of the function that we'll use to call it. Maybe z_score?
- 2. **Arguments**: things that we want to vary across calls of our function. We'll use x.

We create functions like so:

name <-	<pre>function(arguments)</pre>	
body		
}		

Three components:

- Name: the name of the function that we'll use to call it. Maybe z_score?
- 2. **Arguments**: things that we want to vary across calls of our function. We'll use x.
- 3. Body: the code that the function performs.

Convert our template to a function:

z_score <- function(x) {
 (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}</pre>

Convert our template to a function:

z_score <- function(x) {
 (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}</pre>

Check that it seems to work:

z_score(c(1,2, 3, 4, 5))

[1] -1.265 -0.632 0.000 0.632 1.265

```
covid_votes |>
mutate(
    one_dose_5p_z = z_score(one_dose_5plus_pct),
    one_dose_65p_z = z_score(one_dose_65plus_pct),
    booster_z = z_score(booster_5plus_pct),
    dem_pct_2000_z = z_score(dem_pct_2000),
    dem_pct_2020_z = z_score(dem_pct_2020)
)
```

across() function

If we want to replace our variables with z-scores, we can use the across() function to perform many mutations at once:

covid_votes |>
 mutate(across(one_dose_5plus_pct:dem_pct_2020, z_score))

## # A tibble: 3,114 x 8										
##		fips	county	state	one_d~1	one_d~2	boost~3	dem_p~4		
##		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		
##	1	26039	Crawford Cou~	MI	-0.508	-0.829	0.531	0.340		
##	2	40015	Caddo County	OK	1.40	0.843	0.439	0.556		
##	3	17007	Boone County	IL	0.556	0.795	0.927	0.163		
##	4	12055	Highlands Co~	FL	0.404	0.720	-0.135	0.0402		
##	5	34029	Ocean County	NJ	0.549	0.843	0.623	0.624		
##	6	01067	Henry County	AL	-0.314	-0.0545	-0.799	0.0255		
##	7	27037	Dakota County	MN	1.24	0.843	2.40	0.598		
##	8	27115	Pine County	MN	-0.452	-0.102	0.577	0.612		
##	9	51750	Radford city	VA	-1.49	-1.16	-2.47	0.556		
##	10	22009	Avoyelles Pa~	LA	-0.231	-0.564	-0.424	0.501		
##	## # with 3,104 more rows, 1 more variable:									
##	#	dem_p	oct_2020 <dbl></dbl>	, and a	abbreviat	ted varia	able name	es		
##	#	1: or	ne_dose_5plus_p	oct, 2	: one_dos	se_65plus	s_pct,			

Alternative approach

We could also target all the numeric variables:

covid_votes |>

mutate(across(where(is.numeric), z_score))

A tibble: 3,114 x 8

##		fips	county	state	one_d~1	one_d~2	boost~3	dem_p~4	
##		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	26039	Crawford Cou~	MI	-0.508	-0.829	0.531	0.340	
##	2	40015	Caddo County	OK	1.40	0.843	0.439	0.556	
##	3	17007	Boone County	IL	0.556	0.795	0.927	0.163	
##	4	12055	Highlands Co~	FL	0.404	0.720	-0.135	0.0402	
##	5	34029	Ocean County	NJ	0.549	0.843	0.623	0.624	
##	6	01067	Henry County	AL	-0.314	-0.0545	-0.799	0.0255	
##	7	27037	Dakota County	MN	1.24	0.843	2.40	0.598	
##	8	27115	Pine County	MN	-0.452	-0.102	0.577	0.612	
##	9	51750	Radford city	VA	-1.49	-1.16	-2.47	0.556	
##	10	22009	Avoyelles Pa~	LA	-0.231	-0.564	-0.424	0.501	
##	#	wi†	th 3,104 more 1	rows, 2	1 more va	ariable:			
##	<pre>## # dem_pct_2020 <dbl>, and abbreviated variable names</dbl></pre>								
##	<pre>## # 1: one_dose_5plus_pct, 2: one_dose_65plus_pct,</pre>								
##	#	3: bo	poster_5plus_po	ct, 4:	dem_pct_	2000			

Alternative approach

We could also target only the first dose variables:

covid_votes |>
 mutate(across(starts with("one dose"), z score))

A tibble: 3,114 x 8

##		fips	county	state	one_d~1	one_d~2	boost~3	dem_p~4	
##		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	26039	Crawford Cou~	MI	-0.508	-0.829	31.2	43.8	
##	2	40015	Caddo County	OK	1.40	0.843	30.3	46.4	
##	3	17007	Boone County	IL	0.556	0.795	35.1	41.8	
##	4	12055	Highlands Co~	FL	0.404	0.720	24.7	40.3	
##	5	34029	Ocean County	NJ	0.549	0.843	32.1	47.2	
##	6	01067	Henry County	AL	-0.314	-0.0545	18.2	40.1	
##	7	27037	Dakota County	MN	1.24	0.843	49.5	46.9	
##	8	27115	Pine County	MN	-0.452	-0.102	31.7	47.0	
##	9	51750	Radford city	VA	-1.49	-1.16	1.79	46.4	
##	10	22009	Avoyelles Pa~	LA	-0.231	-0.564	21.9	45.7	
##	# .	wi†	th 3,104 more 1	rows, 2	1 more va	ariable:			
##	<pre>## # dem_pct_2020 <dbl>, and abbreviated variable names</dbl></pre>								
##	#	1: or	ne_dose_5plus_p	oct, 2	: one_dos	se_65plus	s_pct,		
##	#	3: bo	poster_5plus_po	ct, 4:	dem_pct	2000			

What if we want to be able to control na.rm in the calls to mean() and sd() in our z_score function? Add an argument!

z_score2 <- function(x, na.rm = FALSE) {
 (x - mean(x, na.rm = na.rm)) / sd(x, na.rm = na.rm)
</pre>

head(z_score2(covid_votes\$one_dose_5plus_pct))

[1] NA NA NA NA NA NA

head(z_score2(covid_votes\$one_dose_5plus_pct, na.rm = TRUE))

[1] -0.508 1.398 0.556 0.404 0.549 -0.314