Gov 50: 9. Survey Sampling

Matthew Blackwell

Harvard University

- 1. Proportion tables
- 2. Measurement

1/ Proportion tables

CCES Data

library(gov50data) cces_2020

##	## # A tibble: 51,551 x 6						
##		gender	race	educ	pid3	turno~1	pres_~2
##		<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>	<fct></fct>
##	1	Male	White	2-year	Republ~	5	Donald~
##	2	Female	White	Post-grad	Democr~	NA	<na></na>
##	3	Female	White	4-year	Indepe~	5	Joe Bi~
##	4	Female	White	4-year	Democr~	5	Joe Bi~
##	5	Male	White	4-year	Indepe~	5	Other
##	6	Male	White	Some college	Republ~	5	Donald~
##	7	Male	Black	Some college	Not su~	NA	<na></na>
##	8	Female	White	Some college	Indepe~	5	Donald~
##	9	Female	White	High school gradu	ate Republ~	5	Donald~
##	10	Female	White	4-year	Democr~	5	Joe Bi~
##	#	with	ı 51,54	1 more rows, and	abbreviated	variable	e names
##	#	1: tu	rnout_s	self, 2: pres_vote	2		

```
cces_2020 |>
 group_by(pres_vote) |>
 summarize(n = n()) |>
 mutate(prop = n / sum(n))
```

```
## # A tibble: 7 x 3
## pres_vote
                                   n prop
## <fct>
                                <int> <dbl>
## 1 Joe Biden (Democrat)
                                26188 0.508
## 2 Donald J. Trump (Republican) 17702 0.343
## 3 Other
                                 1458 0.0283
## 4 I did not vote in this race 100 0.00194
## 5 T did not vote
                                 13 0.000252
## 6 Not sure
                                190 0.00369
## 7 <NA>
                                 5900 0.114
```

Another approach

```
cces_2020 |>
group_by(pres_vote) |>
summarize(prop = n() / nrow(cces_2020))
```

##	#	A tibble:	7 x 2	
##		pres_vote		prop
##		<fct></fct>		<dbl></dbl>
##	1	Joe Biden	(Democrat)	0.508
##	2	Donald J.	Trump (Republican)	0.343
##	3	Other		0.0283
##	4	I did not	vote in this race	0.00194
##	5	I did not	vote	0.000252
##	6	Not sure		0.00369
##	7	<na></na>		0.114

Another approach

```
cces_2020 |>
group_by(pres_vote) |>
summarize(prop = n() / nrow(cces_2020))
```

##	#	A tibble:	7 x 2	
##		pres_vote		prop
##		<fct></fct>		<dbl></dbl>
##	1	Joe Biden	(Democrat)	0.508
##	2	Donald J.	Trump (Republican)	0.343
##	3	Other		0.0283
##	4	I did not	vote in this race	0.00194
##	5	I did not	vote	0.000252
##	6	Not sure		0.00369
##	7	<na></na>		0.114

Doesn't work if you have filtered the data in any way during the pipe

What happens with multiple grouping variables

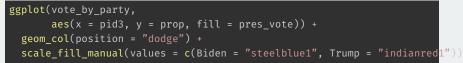
vote_by_party

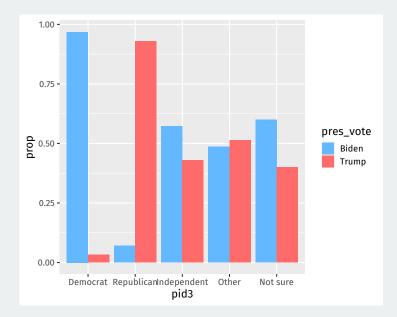
##	# /	A tibble: 10) x 3	
##	# (Groups: pi	.d3 [5]	
##		pid3	pres_vote	prop
##		<fct></fct>	<chr></chr>	<dbl></dbl>
##	1	Democrat	Biden	0.968
##	2	Democrat	Trump	0.0319
##	3	Republican	Biden	0.0712
##	4	Republican	Trump	0.929
##	5	Independent	Biden	0.571
##	6	Independent	Trump	0.429
##	7	Other	Biden	0.487
##	8	Other	Trump	0.513
##	9	Not sure	Biden	0.599
##	10	Not sure	Trump	0.401

##	# 4	A tibble: 10	х З	
##	# (Groups: pio	d3 [5]	
##		pid3	pres_vote	prop
##		<fct></fct>	<chr></chr>	<dbl></dbl>
##	1	Democrat	Biden	0.968
##	2	Democrat	Trump	0.0319
##	3	Republican	Biden	0.0712
##	4	Republican	Trump	0.929
##	5	Independent	Biden	0.571
##	6	Independent	Trump	0.429
##	7	Other	Biden	0.487
##	8	Other	Trump	0.513
##	9	Not sure	Biden	0.599
##	10	Not sure	Trump	0.401

With multiple grouping variables, summarize() drops the last one.

We can visualize this using the fill aesthetic and position="dodge":





```
cces 2020 |>
  filter(pres vote %in% c("Joe Biden (Democrat)",
                          "Donald J. Trump (Republican)")) |>
 mutate(pres vote = if else(pres vote == "Joe Biden (Democrat)",
                             "Biden", "Trump")) |>
  group_by(pid3, pres_vote) |>
  summarize(n = n()) |>
 mutate(prop = n / sum(n)) |>
  select(-n) |>
 pivot wider(
    names_from = pid3,
    values from = prop
```

##	#	A tibble:	2 x 6					
##		pres_vote	Democrat	Republican	Independent	Other	`Not	sure`
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>
##	1	Biden	0.968	0.0712	0.571	0.487		0.599
##	2	Trump	0.0319	0.929	0.429	0.513		0.401

Switch the grouping variables to switch denominator:

```
cces 2020 |>
  filter(pres vote %in% c("Joe Biden (Democrat)",
                          "Donald J. Trump (Republican)")) |>
 mutate(pres vote = if else(pres vote == "Joe Biden (Democrat)",
                             "Biden", "Trump")) |>
  group_by(pres_vote, pid3) |>
  summarize(n = n()) |>
 mutate(prop = n / sum(n)) |>
  select(-n) |>
 pivot wider(
    names_from = pid3,
    values_from = prop
```

##	#	A tibble:	2 x 6				
##	#	Groups:	pres_vote	[2]			
##		pres_vote	Democrat	Republican	Independent	Other	Not sur~1
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Biden	0.674	0.0327	0.252	0.0281	0.0133
##	2	Trump	0.0328	0.631	0.280	0.0437	0.0131
##	#	with	abbreviate	d variable	name 1: `Not	t sure`	

If we want the proportion of all rows, drop all groups

```
cces 2020 |>
  filter(pres vote %in% c("Joe Biden (Democrat)",
                          "Donald J. Trump (Republican)")) |>
 mutate(pres vote = if else(pres vote == "Joe Biden (Democrat)",
                             "Biden", "Trump")) |>
  group_by(pid3, pres_vote) |>
  summarize(n = n(), .groups = "drop") |>
 mutate(prop = n / sum(n)) |>
  select(-n) |>
 pivot wider(
    names_from = pid3,
    values from = prop
```

##	#	A tibble:	2 x 6				
##		pres_vote	e Democrat	Republican	Independent	Other	Not sur~1
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Biden	0.402	0.0195	0.150	0.0167	0.00791
##	2	Trump	0.0132	0.254	0.113	0.0176	0.00529
##	#	with	abbreviate	ed variable	name 1: `Not	t sure`	

2/ Measurement

• Social science is about developing and testing **causal theories**:

- Social science is about developing and testing **causal theories**:
 - Does minimum wage change levels of employment?

- Social science is about developing and testing **causal theories**:
 - Does minimum wage change levels of employment?
 - Does outgroup contact influence views on immigration?

- Social science is about developing and testing **causal theories**:
 - Does minimum wage change levels of employment?
 - Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:

- Social science is about developing and testing **causal theories**:
 - Does minimum wage change levels of employment?
 - Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.

- Social science is about developing and testing **causal theories**:
 - Does minimum wage change levels of employment?
 - Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.
 - We took these for granted when talking about causality.

- Social science is about developing and testing **causal theories**:
 - Does minimum wage change levels of employment?
 - Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.
 - We took these for granted when talking about causality.
- Need operational definition to concretely measure these concepts

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

Observable by survey

Not directly observable

• Minimum wage laws

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

Observable by survey

- Minimum wage laws
- Sensor measurements

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

- Minimum wage laws
- Sensor measurements
- Election results

Observable by survey

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

- Minimum wage laws
- Sensor measurements
- Election results

Observable by survey

• Age of a person

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

- Minimum wage laws
- Sensor measurements
- Election results

Observable by survey

- Age of a person
- Employment status

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

- Minimum wage laws
- Sensor measurements
- Election results

Observable by survey

- Age of a person
- Employment status
- Presidential approval

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

- Minimum wage laws
- Sensor measurements
- Election results

Observable by survey

- Age of a person
- Employment status
- Presidential approval

Not directly observable

• A person's ideology

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

- Minimum wage laws
- Sensor measurements
- Election results

Observable by survey

- Age of a person
- Employment status
- Presidential approval

- A person's ideology
- Levels of democracy

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

- Minimum wage laws
- Sensor measurements
- Election results

Observable by survey

- Age of a person
- Employment status
- Presidential approval

- A person's ideology
- Levels of democracy
- Extent of gerrymandering

• Concept: presidential approval.

- Concept: presidential approval.
- Conceptual definition:

- Concept: presidential approval.
- Conceptual definition:
 - Extent to which US adults support the actions and policies of the current US president.

- Concept: presidential approval.
- Conceptual definition:
 - Extent to which US adults support the actions and policies of the current US president.
- Operational definition:

- Concept: presidential approval.
- Conceptual definition:
 - Extent to which US adults support the actions and policies of the current US president.
- Operational definition:
 - "On a scale from 1 to 5, where 1 is least supportive and 5 is more supportive, how much would you say you support the job that Joe Biden is doing as president?"

Response to citizenship question across two-waves of CCES panel.

Response in 2010	Response in 2012	Number of respondents	Percentage
Citizen	Citizen	18,737	99.25
Citizen	Non-Citizen	20	0.11
Non-Citizen	Citizen	36	0.19
Non-Citizen	Non-Citizen	85	0.45

• Measurement error: chance variation in our measurements.

Response to citizenship question across two-waves of CCES panel.

Response in 2010	Response in 2012	Number of respondents	Percentage
Citizen	Citizen	18,737	99.25
Citizen	Non-Citizen	20	0.11
Non-Citizen	Citizen	36	0.19
Non-Citizen	Non-Citizen	85	0.45

• Measurement error: chance variation in our measurements.

• individual measurement = exact value + chance error

Response to citizenship question across two-waves of CCES panel.

Response in 2010	Response in 2012	Number of respondents	Percentage
Citizen	Citizen	18,737	99.25
Citizen	Non-Citizen	20	0.11
Non-Citizen	Citizen	36	0.19
Non-Citizen	Non-Citizen	85	0.45

• Measurement error: chance variation in our measurements.

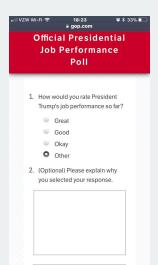
- individual measurement = exact value + chance error
- chance errors tend to cancel out when we take averages.

Response to citizenship question across two-waves of CCES panel.

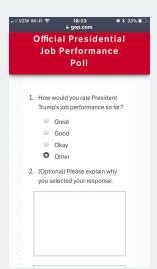
Response in 2010	Response in 2012	Number of respondents	Percentage
Citizen	Citizen	18,737	99.25
Citizen	Non-Citizen	20	0.11
Non-Citizen	Citizen	36	0.19
Non-Citizen	Non-Citizen	85	0.45

• Measurement error: chance variation in our measurements.

- individual measurement = exact value + chance error
- chance errors tend to cancel out when we take averages.
- why? often data entry errors or faulty memories.



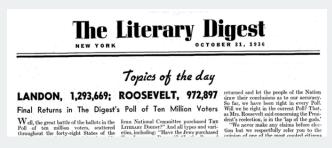
• **Bias**: systematic errors for all units in the same direction.



- **Bias**: systematic errors for all units in the same direction.
- individual measurement = exact value + bias + chance error.

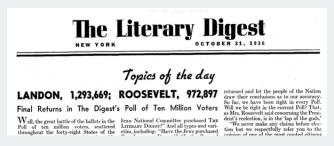
- **Bias**: systematic errors for all units in the same direction.
- individual measurement = exact value + bias + chance error.
- "What did you eat yesterday?"
 ~> underreporting

1936 Literary Digest Poll

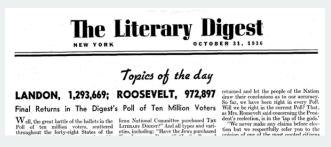


• Literary Digest predicted elections using mail-in polls.

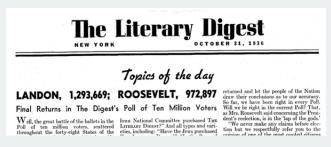
1936 Literary Digest Poll



- · Literary Digest predicted elections using mail-in polls.
- · Source of addresses: automobile registrations, phone books, etc.



- Literary Digest predicted elections using mail-in polls.
- Source of addresses: automobile registrations, phone books, etc.
- In 1936, sent out 10 million ballots, over 2.3 million returned.



- Literary Digest predicted elections using mail-in polls.
- · Source of addresses: automobile registrations, phone books, etc.
- In 1936, sent out 10 million ballots, over 2.3 million returned.
- George Gallup used only 50,000 respondents.

	FDR's Vote Share
Literary Digest	43%
George Gallup	56%
Actual Outcome	62%

	FDR's Vote Share
Literary Digest	43%
George Gallup	56%
Actual Outcome	62%

• Selection bias: ballots skewed toward the wealthy (with cars, phones)

	FDR's Vote Share
Literary Digest	43%
George Gallup	56%
Actual Outcome	62%

- Selection bias: ballots skewed toward the wealthy (with cars, phones)
 - Only 1 in 4 households had a phone in 1936.

	FDR's Vote Share
Literary Digest	43%
George Gallup	56%
Actual Outcome	62%

- Selection bias: ballots skewed toward the wealthy (with cars, phones)
 - Only 1 in 4 households had a phone in 1936.
- Nonresponse bias: respondents differ from nonrespondents.

	FDR's Vote Share
Literary Digest	43%
George Gallup	56%
Actual Outcome	62%

- Selection bias: ballots skewed toward the wealthy (with cars, phones)
 - Only 1 in 4 households had a phone in 1936.
- Nonresponse bias: respondents differ from nonrespondents.
- $\cdot \rightsquigarrow$ when selection procedure is biased, adding more units won't help!

1948 Election

	Truman	Dewey	Thurmond	Wallace
Crossley	45	50	2	3
Gallup	44	50	2	4
Roper	38	53	5	4
Actual	50	45	3	2

	Truman	Dewey	Thurmond	Wallace
Crossley	45	50	2	3
Gallup	44	50	2	4
Roper	38	53	5	4
Actual	50	45	3	2

• **Quota sampling**: fixed quota of certain respondents for each interviewer

	Truman	Dewey	Thurmond	Wallace
Crossley	45	50	2	3
Gallup	44	50	2	4
Roper	38	53	5	4
Actual	50	45	3	2

- **Quota sampling**: fixed quota of certain respondents for each interviewer
 - If black women make up 5% of the population, stop interviewing them once they make up 5% of your sample.

	Truman	Dewey	Thurmond	Wallace
Crossley	45	50	2	3
Gallup	44	50	2	4
Roper	38	53	5	4
Actual	50	45	3	2

- **Quota sampling**: fixed quota of certain respondents for each interviewer
 - If black women make up 5% of the population, stop interviewing them once they make up 5% of your sample.
- · Sample resembles the population on these characteristics

	Truman	Dewey	Thurmond	Wallace
Crossley	45	50	2	3
Gallup	44	50	2	4
Roper	38	53	5	4
Actual	50	45	3	2

- **Quota sampling**: fixed quota of certain respondents for each interviewer
 - If black women make up 5% of the population, stop interviewing them once they make up 5% of your sample.
- · Sample resembles the population on these characteristics
- Potential unobserved confounding \leadsto selection bias

	Truman	Dewey	Thurmond	Wallace
Crossley	45	50	2	3
Gallup	44	50	2	4
Roper	38	53	5	4
Actual	50	45	3	2

- **Quota sampling**: fixed quota of certain respondents for each interviewer
 - If black women make up 5% of the population, stop interviewing them once they make up 5% of your sample.
- · Sample resembles the population on these characteristics
- Potential unobserved confounding \leadsto selection bias
- Republicans easier to find within quotas (phones, listed addresses)

• Probability sampling to ensure representativeness

- Probability sampling to ensure representativeness
 - Definition: every unit in the population has a known, non-zero probability of being selected into sample.

- Probability sampling to ensure representativeness
 - Definition: every unit in the population has a known, non-zero probability of being selected into sample.
- Simple random sampling: every unit has an equal selection probability.

- Probability sampling to ensure representativeness
 - Definition: every unit in the population has a known, non-zero probability of being selected into sample.
- Simple random sampling: every unit has an equal selection probability.
- Random digit dialing:

- Probability sampling to ensure representativeness
 - Definition: every unit in the population has a known, non-zero probability of being selected into sample.
- Simple random sampling: every unit has an equal selection probability.
- Random digit dialing:
 - Take a particular area code + exchange: 617-495-XXXX.

- Probability sampling to ensure representativeness
 - Definition: every unit in the population has a known, non-zero probability of being selected into sample.
- Simple random sampling: every unit has an equal selection probability.
- Random digit dialing:
 - Take a particular area code + exchange: 617-495-XXXX.
 - Randomly choose each digit in XXXX to call a particular phone.

- Probability sampling to ensure representativeness
 - Definition: every unit in the population has a known, non-zero probability of being selected into sample.
- Simple random sampling: every unit has an equal selection probability.
- Random digit dialing:
 - Take a particular area code + exchange: 617-495-XXXX.
 - Randomly choose each digit in XXXX to call a particular phone.
 - Every phone in America has an equal chance of being included in sample.

Sampling lingo

• Target population: set of people we want to learn about.

Sampling lingo

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.
- Sampling frame: list of people from which we will actually sample.

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.
- Sampling frame: list of people from which we will actually sample.
 - Frame bias: list of registered voters (frame) might include nonvoters!

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.
- Sampling frame: list of people from which we will actually sample.
 - Frame bias: list of registered voters (frame) might include nonvoters!
- **Sample**: set of people contacted.

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.
- **Sampling frame**: list of people from which we will actually sample.
 - Frame bias: list of registered voters (frame) might include nonvoters!
- **Sample**: set of people contacted.
- Respondents: subset of sample that actually responds to the survey.

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.
- Sampling frame: list of people from which we will actually sample.
 - Frame bias: list of registered voters (frame) might include nonvoters!
- **Sample**: set of people contacted.
- Respondents: subset of sample that actually responds to the survey.
 - Unit non-response: sample \neq respondents.

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.
- Sampling frame: list of people from which we will actually sample.
 - Frame bias: list of registered voters (frame) might include nonvoters!
- **Sample**: set of people contacted.
- Respondents: subset of sample that actually responds to the survey.
 - Unit non-response: sample \neq respondents.
 - Not everyone picks up their phone.

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.
- **Sampling frame**: list of people from which we will actually sample.
 - Frame bias: list of registered voters (frame) might include nonvoters!
- **Sample**: set of people contacted.
- Respondents: subset of sample that actually responds to the survey.
 - Unit non-response: sample \neq respondents.
 - Not everyone picks up their phone.
- Completed items: subset of questions that respondents answer.

- Target population: set of people we want to learn about.
 - Ex: people who will vote in the next election.
- **Sampling frame**: list of people from which we will actually sample.
 - Frame bias: list of registered voters (frame) might include nonvoters!
- **Sample**: set of people contacted.
- **Respondents**: subset of sample that actually responds to the survey.
 - Unit non-response: sample \neq respondents.
 - Not everyone picks up their phone.
- Completed items: subset of questions that respondents answer.
 - Item non-response: refusing to disclose their vote preference.

• Problems of telephone survey

- Problems of telephone survey
 - Cell phones (double counting for the wealthy)

- Problems of telephone survey
 - Cell phones (double counting for the wealthy)
 - Caller ID screening (unit non-response)

- Problems of telephone survey
 - · Cell phones (double counting for the wealthy)
 - Caller ID screening (unit non-response)
 - Response rates down to 9%!

- Problems of telephone survey
 - · Cell phones (double counting for the wealthy)
 - Caller ID screening (unit non-response)
 - Response rates down to 9%!
- An alternative: Internet surveys

- Problems of telephone survey
 - · Cell phones (double counting for the wealthy)
 - Caller ID screening (unit non-response)
 - Response rates down to 9%!
- An alternative: Internet surveys
 - Opt-in panels, respondent-driven sampling \rightsquigarrow **non-probability sampling**

- Problems of telephone survey
 - · Cell phones (double counting for the wealthy)
 - Caller ID screening (unit non-response)
 - Response rates down to 9%!
- An alternative: Internet surveys
 - Opt-in panels, respondent-driven sampling \rightsquigarrow **non-probability sampling**
 - Cheaper, but non-representative

- Problems of telephone survey
 - · Cell phones (double counting for the wealthy)
 - Caller ID screening (unit non-response)
 - Response rates down to 9%!
- An alternative: Internet surveys
 - Opt-in panels, respondent-driven sampling \rightsquigarrow **non-probability sampling**
 - Cheaper, but non-representative
 - Digital divide: rich vs. poor, young vs. old

- Problems of telephone survey
 - · Cell phones (double counting for the wealthy)
 - Caller ID screening (unit non-response)
 - Response rates down to 9%!
- An alternative: Internet surveys
 - Opt-in panels, respondent-driven sampling \rightsquigarrow **non-probability sampling**
 - Cheaper, but non-representative
 - Digital divide: rich vs. poor, young vs. old
 - Correct for potential sampling bias via statistical methods.