Gov 50: 8. Summarizing Data

Matthew Blackwell

Harvard University

- 1. Descriptive Statistics
- 2. Missing data
- 3. Proportion tables

1/ Descriptive Statistics

library(tidyverse) library(gapminder) gapminder

##	# A tibble: 1,704 x 6							
##		country	continent	year	lifeExp	рор	gdpPercap	
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>	
##	1	Afghanistan	Asia	1952	28.8	8425333	779.	
##	2	Afghanistan	Asia	1957	30.3	9240934	821.	
##	3	Afghanistan	Asia	1962	32.0	10267083	853.	
##	4	Afghanistan	Asia	1967	34.0	11537966	836.	
##	5	Afghanistan	Asia	1972	36.1	13079460	740.	
##	6	Afghanistan	Asia	1977	38.4	14880372	786.	
##	7	Afghanistan	Asia	1982	39.9	12881816	978.	
##	8	Afghanistan	Asia	1987	40.8	13867957	852.	
##	9	Afghanistan	Asia	1992	41.7	16317921	649.	
##	10	Afghanistan	Asia	1997	41.8	22227415	635.	
##	#	with 1.69	94 more rov	NS				

Lots and lots of data

head(gapminder\$gdpPercap, n = 200)

##	[1]	779	821	853	836	740	786	978	852	649
##	[10]	635	727	975	1601	1942	2313	2760	3313	3533
##	[19]	3631	3739	2497	3193	4604	5937	2449	3014	2551
##	[28]	3247	4183	4910	5745	5681	5023	4797	5288	6223
##	[37]	3521	3828	4269	5523	5473	3009	2757	2430	2628
##	[46]	2277	2773	4797	5911	6857	7133	8053	9443	10079
##	[55]	8998	9140	9308	10967	8798	12779	10040	10950	12217
##	[64]	14526	16789	18334	19477	21889	23425	26998	30688	34435
##	[73]	6137	8843	10751	12835	16662	19749	21597	23688	27042
##	[82]	29096	32418	36126	9867	11636	12753	14805	18269	19340
##	[91]	19211	18524	19036	20292	23404	29796	684	662	686
##	[100]	721	630	660	677	752	838	973	1136	1391
##	[109]	8343	9715	10991	13149	16672	19118	20980	22526	25576
##	[118]	27561	30486	33693	1063	960	949	1036	1086	1029
##	[127]	1278	1226	1191	1233	1373	1441	2677	2128	2181
##	[136]	2587	2980	3548	3157	2754	2962	3326	3413	3822
##	[145]	974	1354	1710	2172	2860	3528	4127	4314	2547
##	[154]	4766	6019	7446	851	918	984	1215	2264	3215
##	[163]	4551	6206	7954	8647	11004	12570	2109	2487	3337
##	[172]	3430	4986	6660	7031	7807	6950	7958	8131	9066

• How should we summarize the wages data? Many possibilities!

- How should we summarize the wages data? Many possibilities!
 - Up to now: focus on **averages** or means of variables.

- How should we summarize the wages data? Many possibilities!
 - Up to now: focus on **averages** or means of variables.
- Two salient features of a variable that we want to know:

- How should we summarize the wages data? Many possibilities!
 - Up to now: focus on **averages** or means of variables.
- Two salient features of a variable that we want to know:
 - **Central tendency**: where is the middle/typical/average value.

- How should we summarize the wages data? Many possibilities!
 - Up to now: focus on **averages** or means of variables.
- Two salient features of a variable that we want to know:
 - **Central tendency**: where is the middle/typical/average value.
 - Spread around the center: are all values to the center or spread out?

• "Center" of the data: typical/average value.

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Median:

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Median:

$$median = \begin{cases} middle value\\ \frac{\text{sum of two middle values}}{2} \end{cases}$$

if number of entries is odd if number of entries is even

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Median:

$$median = \begin{cases} middle value\\ \frac{sum of two middle values}{2} \end{cases}$$

if number of entries is odd if number of entries is even

• In **R**: mean() and median().

• Median more robust to **outliers**:

Mean vs median

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. Mean? Median?

Mean vs median

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. Mean? Median?

• Example 2: data = {0, 1, 2, 3, 100}. Mean? Median?

Mean vs median

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. Mean? Median?

• Example 2: data = {0, 1, 2, 3, 100}. Mean? Median?

• What does Mark Zuckerberg do to the mean vs median income?

ggplot(gapminder, aes(x = lifeExp)) +
 geom_histogram(binwidth = 1) +
 geom_vline(aes(xintercept = mean(lifeExp)), color = "indianred") +
 geom_vline(aes(xintercept = median(lifeExp)), color = "dodgerblue")

summary(gapminder\$lifeExp)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	23.6	48.2	60.7	59.5	70.8	82.6

ggplot(gapminder, aes(x = gdpPercap)) +
 geom_histogram(binwidth = 5000) +
 geom_vline(aes(xintercept = mean(gdpPercap)), color = "indianred") +
 geom_vline(aes(xintercept = median(gdpPercap)), color = "dodgerblue")

summary(gapminder\$gdpPercap)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	241	1202	3532	7215	9325	113523

Which distribution would you prefer?

Lottery where we randomly draw one value from A or B:

Which distribution would you prefer?

Lottery where we randomly draw one value from A or B:

They have the same mean, so why do we care about the difference? Spread!!

• Are the values of the variable close to the center?

- Are the values of the variable close to the center?
- Range: [min(X), max(X)]

- Are the values of the variable close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.

- Are the values of the variable close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
 - 25th percentile = lower quartile (25% of the data below this value)

- Are the values of the variable close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)

- Are the values of the variable close to the center?
- Range: $[\min(X), \max(X)]$
- **Quantile** (quartile, percentile, etc): divide data into equal sized groups.
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)

- Are the values of the variable close to the center?
- Range: [min(X), max(X)]
- **Quantile** (quartile, percentile, etc): divide data into equal sized groups.
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability

- Are the values of the variable close to the center?
- Range: [min(X), max(X)]
- **Quantile** (quartile, percentile, etc): divide data into equal sized groups.
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
 - How spread out is the middle half of the data?

- Are the values of the variable close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
 - How spread out is the middle half of the data?
 - Is most of the data really close to the median or are the values spread out?

- Are the values of the variable close to the center?
- Range: [min(X), max(X)]
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
 - How spread out is the middle half of the data?
 - Is most of the data really close to the median or are the values spread out?
- R function: range(), summary(), IQR()

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

• **Standard deviation**: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

• Steps:

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.
 - 2. Square each resulting difference.

standard deviation
$$= \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.
 - 2. Square each resulting difference.
 - 3. Take the sum of these values

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.
 - 2. Square each resulting difference.
 - 3. Take the sum of these values
 - 4. Divide by n 1 (or *n*, doesn't matter much)

standard deviation
$$= \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.
 - 2. Square each resulting difference.
 - 3. Take the sum of these values
 - 4. Divide by n 1 (or *n*, doesn't matter much)
 - 5. Take the square root.

standard deviation
$$= \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.
 - 2. Square each resulting difference.
 - 3. Take the sum of these values
 - 4. Divide by n 1 (or *n*, doesn't matter much)
 - 5. Take the square root.
- Variance = standard deviation²

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.
 - 2. Square each resulting difference.
 - 3. Take the sum of these values
 - 4. Divide by n 1 (or *n*, doesn't matter much)
 - 5. Take the square root.
- Variance = standard deviation²
- Why not just take the average deviations from mean without squaring?

2/ Missing data

• Nonresponse: respondent can't or won't answer question.

- Nonresponse: respondent can't or won't answer question.
 - Sensitive questions \rightsquigarrow social desirability bias

- Nonresponse: respondent can't or won't answer question.
 - Sensitive questions \rightsquigarrow social desirability bias
 - Some countries lack official statistics like unemployment.

- Nonresponse: respondent can't or won't answer question.
 - Sensitive questions \rightsquigarrow social desirability bias
 - Some countries lack official statistics like unemployment.
 - · Leads to missing data.

- Nonresponse: respondent can't or won't answer question.
 - Sensitive questions \rightsquigarrow social desirability bias
 - · Some countries lack official statistics like unemployment.
 - · Leads to missing data.
- Missing data in R: a special value NA

- Nonresponse: respondent can't or won't answer question.
 - Sensitive questions \rightsquigarrow social desirability bias
 - · Some countries lack official statistics like unemployment.
 - · Leads to missing data.
- Missing data in R: a special value NA
- Have already seen how to use na.rm = TRUE

library(gov50data) cces_2020

##	# # A tibble: 51,551 x 6								
##	ge	ender	race	educ			pid3	turno~1	pres_~2
##	<1	fct>	<fct></fct>	<fct:< td=""><td>></td><td></td><td><fct></fct></td><td><dbl></dbl></td><td><fct></fct></td></fct:<>	>		<fct></fct>	<dbl></dbl>	<fct></fct>
##	1 Ma	ale	White	2-yea	ar		Republ~	1	Donald~
##	2 Fe	emale	White	Post	-grad		Democr~	NA	<na></na>
##	3 Fe	emale	White	4-yea	ar		Indepe~	1	Joe Bi~
##	4 F€	emale	White	4-yea	ar		Democr~	1	Joe Bi~
##	5 Ma	ale	White	4-yea	ar		Indepe~	1	Other
##	6 Ma	ale	White	Some	college	2	Republ~	1	Donald~
##	7 Ma	ale	Black	Some	college	2	Not su~	NA	<na></na>
##	8 Fe	emale	White	Some	college	<u>)</u>	Indepe~	1	Donald~
##	9 Fe	emale	White	High	school	graduate	Republ~	1	Donald~
##	10 Fe	emale	White	4-yea	ar		Democr~	1	Joe Bi~
##	#	. with	ı 51,54	41 moi	re rows,	and abb	reviated	variable	e names
##	# 1	l: tui	rnout_s	self,	2: pres	_vote			

drop_na() to remove rows with missing values

cces_2020 >	
drop_na()	

ππ	" " A CIDDLE. 43,051 A O							
##		gender	race	educ	pid3	turno~1 pres_~2		
##		<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl> <fct></fct></dbl>		
##	1	Male	White	2-year	Republ~	1 Donald~		
##	2	Female	White	4-year	Indepe~	1 Joe Bi~		
##	3	Female	White	4-year	Democr~	1 Joe Bi~		
##	4	Male	White	4-year	Indepe~	1 Other		
##	5	Male	White	Some college	Republ~	1 Donald~		
##	6	Female	White	Some college	Indepe~	1 Donald~		
##	7	Female	White	High school graduate	Republ~	1 Donald~		
##	8	Female	White	4-year	Democr~	1 Joe Bi~		
##	9	Female	White	4-year	Democr~	1 Joe Bi~		
##	10	Female	White	4-year	Democr~	1 Joe Bi~		
##	# .	with	1 45,64	41 more rows, and abbi	reviated	variable names		
##	#	1: tu	rnout_s	self, 2: pres_vote				

 Λ +ibblo, $\Lambda = 651 \times 6$

Drop rows based on certain variables

```
cces_2020 |>
  dim_desc()
```

```
## [1] "[51,551 x 6]"
```

cces_2020 |>
 drop_na() |>
 dim_desc()

```
## [1] "[45,651 x 6]"
```

```
cces_2020 |>
  drop_na(turnout_self) |>
  dim_desc()
```

[1] "[48,462 x 6]"

Available-case vs complete-case analysis

Available-case analysis: use the data you have for that variable:

cces_2020 |>
 summarize(mean(turnout_self, na.rm = TRUE)) |>
 pull()

[1] 0.942

Available-case vs complete-case analysis

Available-case analysis: use the data you have for that variable:

cces_2020 |>
 summarize(mean(turnout_self, na.rm = TRUE)) |>
 pull()

[1] 0.942

Complete-case analysis: only use units that have data on all variables

[1] 0.999

Available-case vs complete-case analysis

Available-case analysis: use the data you have for that variable:

cces_2020 |>
 summarize(mean(turnout_self, na.rm = TRUE)) |>
 pull()

[1] 0.942

Complete-case analysis: only use units that have data on all variables

```
cces_2020 |>
  drop_na() |>
  summarize(mean(turnout_self)) |>
  pull()
```

[1] 0.999

(also called listwise deletion)

is.na() to detect missingness

Trying to detect missingness with == doesn't work:

c(5, 6, NA, 0) == NA

[1] NA NA NA NA

is.na() to detect missingness

Trying to detect missingness with == doesn't work:

c(5, 6, NA, 0) == NA

[1] NA NA NA NA

Use is.na() instead:

is.na(c(5, 6, NA, 0))

[1] FALSE FALSE TRUE FALSE

is.na() to detect missingness

Trying to detect missingness with == doesn't work:

c(5, 6, NA, 0) == NA

[1] NA NA NA NA

Use is.na() instead:

is.na(c(5, 6, NA, 0))

[1] FALSE FALSE TRUE FALSE

Can use sum() or mean() on this to get number/proportion missing:

sum(is.na(c(5, 6, NA, 0)))

[1] 1

Nonresponse can create bias if lower turnout \Rightarrow more non-response:

```
cces_2020 |>
group_by(pid3) |>
summarize(
mean_turnout = mean(turnout_self, na.rm = TRUE),
missing_turnout = mean(is.na(turnout_self))
)
```

```
## # A tibble: 5 x 3
##
   pid3
              mean turnout missing turnout
##
  <fct>
                    <dbl>
                                <dbl>
## 1 Democrat
                    0.963
                                 0.0280
  2 Republican
                0,953
                               0.0403
##
## 3 Independent
               0.924
                               0.0718
## 4 Other
                  0.957
                               0.0709
                   0.630
                                0.431
## 5 Not sure
```

3/ Proportion tables

First, let's review how to get counts:

```
cces_2020 |>
group_by(pres_vote) |>
summarize(n = n())
```

##	#	A tibble: 7	7 x 2	
##		pres_vote		n
##		<fct></fct>		<int></int>
##	1	Joe Biden ((Democrat)	26188
##	2	Donald J.	Trump (Republican)	17702
##	3	Other		1458
##	4	I did not v	vote in this race	100
##	5	I did not v	vote	13
##	6	Not sure		190
##	7	<na></na>		5900

First attempt to create proportions

```
cces_2020 |>
group_by(pres_vote) |>
summarize(prop = n() / sum(n()))
```

```
## # A tibble: 7 x 2
##
  pres vote
                                    prop
## <fct>
                                   <dbl>
## 1 Joe Biden (Democrat)
                                        1
  2 Donald J. Trump (Republican)
##
                                        1
##
  3 Other
                                        1
## 4 T did not vote in this race
                                        1
## 5 I did not vote
                                        1
## 6 Not sure
                                        1
                                        1
## 7 <NA>
```

First attempt to create proportions

```
cces_2020 |>
group_by(pres_vote) |>
summarize(prop = n() / sum(n()))
```

```
## # A tibble: 7 x 2
## pres vote
                                    prop
## <fct>
                                   <dbl>
## 1 Joe Biden (Democrat)
                                        1
  2 Donald J. Trump (Republican)
##
                                        1
  3 Other
                                        1
##
## 4 T did not vote in this race
                                        1
## 5 I did not vote
                                        1
## 6 Not sure
                                        1
## 7 <NA>
                                        1
```

Inside summarize() all operations are done within groups!

Mutate after summarizing

```
cces_2020 |>
group_by(pres_vote) |>
summarize(n = n()) |>
mutate(prop = n / sum(n))
```

```
## # A tibble: 7 x 3
## pres vote
                                   n prop
                                <int> <dbl>
## <fct>
## 1 Joe Biden (Democrat)
                               26188 0.508
## 2 Donald J. Trump (Republican) 17702 0.343
## 3 Other
                               1458 0.0283
## 4 I did not vote in this race 100 0.00194
## 5 T did not vote
                                13 0.000252
                                 190 0.00369
## 6 Not sure
## 7 <NA>
                                 5900 0.114
```

Mutate after summarizing

```
cces_2020 |>
group_by(pres_vote) |>
summarize(n = n()) |>
mutate(prop = n / sum(n))
```

```
## # A tibble: 7 x 3
## pres vote
                                  n prop
## <fct>
                                <int> <dbl>
## 1 Joe Biden (Democrat)
                               26188 0.508
## 2 Donald J. Trump (Republican) 17702 0.343
## 3 Other
                              1458 0.0283
## 4 I did not vote in this race 100 0.00194
## 5 T did not vote
                                13 0.000252
## 6 Not sure
                                 190 0.00369
## 7 <NA>
                                5900 0.114
```

Grouping is silently dropped after summarize()

What happens with multiple grouping variables

##	# /	A tibble: 10	x 4			
##	# (Groups: pio	d3 [5]			
##		pid3	pres_vote		n	prop
##		<fct></fct>	<fct></fct>		<int></int>	<dbl></dbl>
##	1	Democrat	Joe Biden	(Democrat)	17649	0.968
##	2	Democrat	Donald J.	Trump (Republican)	581	0.0319
##	3	Republican	Joe Biden	(Democrat)	856	0.0712
##	4	Republican	Donald J.	Trump (Republican)	11164	0.929
##	5	Independent	Joe Biden	(Democrat)	6601	0.571
##	6	Independent	Donald J.	Trump (Republican)	4951	0.429
##	7	Other	Joe Biden	(Democrat)	735	0.487
##	8	Other	Donald J.	Trump (Republican)	774	0.513
##	9	Not sure	Joe Biden	(Democrat)	347	0.599
##	10	Not sure	Donald J.	<pre>Trump (Republican)</pre>	232	0.401

##	# /	A tibble: 10	x 4			
##	# (Groups: pio	d3 [5]			
##		pid3	pres_vote		n	prop
##		<fct></fct>	<fct></fct>		<int></int>	<dbl></dbl>
##	1	Democrat	Joe Biden	(Democrat)	17649	0.968
##	2	Democrat	Donald J.	Trump (Republican)	581	0.0319
##	3	Republican	Joe Biden	(Democrat)	856	0.0712
##	4	Republican	Donald J.	Trump (Republican)	11164	0.929
##	5	Independent	Joe Biden	(Democrat)	6601	0.571
##	6	Independent	Donald J.	Trump (Republican)	4951	0.429
##	7	Other	Joe Biden	(Democrat)	735	0.487
##	8	Other	Donald J.	Trump (Republican)	774	0.513
##	9	Not sure	Joe Biden	(Democrat)	347	0.599
##	10	Not sure	Donald J.	Trump (Republican)	232	0.401

With multiple grouping variables, summarize() drops the last one.

Dropping all groups

If we want the proportion of all rows, need to drop all groups.

```
## # A tibble: 10 x 4
```

##		pid3	pres_vote		n	prop
##		<fct></fct>	<fct></fct>		<int></int>	<dbl></dbl>
##	1	Democrat	Joe Biden	(Democrat)	17649	0.402
##	2	Democrat	Donald J.	Trump (Republican)	581	0.0132
##	3	Republican	Joe Biden	(Democrat)	856	0.0195
##	4	Republican	Donald J.	Trump (Republican)	11164	0.254
##	5	Independent	Joe Biden	(Democrat)	6601	0.150
##	6	Independent	Donald J.	Trump (Republican)	4951	0.113
##	7	Other	Joe Biden	(Democrat)	735	0.0167
##	8	Other	Donald J.	Trump (Republican)	774	0.0176
##	9	Not sure	Joe Biden	(Democrat)	347	0.00791
##	10	Not sure	Donald J.	Trump (Republican)	232	0.00529