Gov 50: 8. Summarizing

Data

Matthew Blackwell
Harvard University

Roadmap

1. Descriptive Statistics
2. Missing data
3. Proportion tables

1/ Descriptive Statistics

Lots of data

library(tidyverse)
 library(gapminder)
 gapminder

\#		country	continent	year	lifeExp		gdpPercap
\#		<fct>	<fct>	<int>	<dbl>	<int>	<dbl>
\#	1	Afghanistan	Asia	1952	28.8	8425333	779.
\#\#	2	Afghanistan	Asia	1957	30.3	9240934	821.
\#\#	3	Afghanistan	Asia	1962	32.0	10267083	853.
\#\#	4	Afghanistan	Asia	1967	34.0	11537966	836.
\#\#	5	Afghanistan	Asia	1972	36.1	13079460	740.
\#\#	6	Afghanistan	Asia	1977	38.4	14880372	786.
\#\#	7	Afghanistan	Asia	1982	39.9	12881816	978.
\#\#	8	Afghanistan	Asia	1987	40.8	13867957	852.
\#\#	9	Afghanistan	Asia	1992	41.7	16317921	649.
\#	10	Afghanistan	Asia	1997	41.8	22227415	635.

\#\# \# ... with 1,694 more rows

Lots and lots of data

head(gapminder\$gdpPercap, $n=200$)

\#\#	[1]	779	821	853	836	740	786	978	852	649
\#\#	[10]	635	727	975	1601	1942	2313	2760	3313	3533
\#\#	[19]	3631	3739	2497	3193	4604	5937	2449	3014	2551
\#\#	[28]	3247	4183	4910	5745	5681	5023	4797	5288	6223
\#\#	[37]	3521	3828	4269	5523	5473	3009	2757	2430	2628
\#\#	[46]	2277	2773	4797	5911	6857	7133	8053	9443	10079
\#\#	[55]	8998	9140	9308	10967	8798	12779	10040	10950	12217
\#\# [64]	14526	16789	18334	19477	21889	23425	26998	30688	34435	
\#\#	[73]	6137	8843	10751	12835	16662	19749	21597	23688	27042
\#\# [82]	29096	32418	36126	9867	11636	12753	14805	18269	19340	
\#\# [91]	19211	18524	19036	20292	23404	29796	684	662	686	
\#\# [100]	721	630	660	677	752	838	973	1136	1391	
\#\# [109]	8343	9715	10991	13149	16672	19118	20980	22526	25576	
\#\# [118]	27561	30486	33693	1063	960	949	1036	1086	1029	
\#\# [127]	1278	1226	1191	1233	1373	1441	2677	2128	2181	
\#\# [136]	2587	2980	3548	3157	2754	2962	3326	3413	3822	
\#\# [145]	974	1354	1710	2172	2860	3528	4127	4314	2547	
\#\# [154]	4766	6019	7446	851	918	984	1215	2264	3215	
\#\# [163]	4551	6206	7954	8647	11004	12570	2109	2487	3337	
\#\# [172]	3430	4986	6660	7031	7807	6950	7958	8131	9066	

How to summarize data

- How should we summarize the wages data? Many possibilities!

How to summarize data

- How should we summarize the wages data? Many possibilities!
- Up to now: focus on averages or means of variables.

How to summarize data

- How should we summarize the wages data? Many possibilities!
- Up to now: focus on averages or means of variables.
- Two salient features of a variable that we want to know:

How to summarize data

- How should we summarize the wages data? Many possibilities!
- Up to now: focus on averages or means of variables.
- Two salient features of a variable that we want to know:
- Central tendency: where is the middle/typical/average value.

How to summarize data

- How should we summarize the wages data? Many possibilities!
- Up to now: focus on averages or means of variables.
- Two salient features of a variable that we want to know:
- Central tendency: where is the middle/typical/average value.
- Spread around the center: are all values to the center or spread out?

Center of the data

- "Center" of the data: typical/average value.

Center of the data

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Center of the data

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Median:

Center of the data

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Median:

$$
\text { median }= \begin{cases}\text { middle value } & \text { if number of entries is odd } \\ \frac{\text { sum of two middle values }}{2} & \text { if number of entries is even }\end{cases}
$$

Center of the data

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Median:

$$
\text { median }= \begin{cases}\text { middle value } & \text { if number of entries is odd } \\ \frac{\text { sum of two middle values }}{2} & \text { if number of entries is even }\end{cases}
$$

- In R: mean() and median().

Mean vs median

- Median more robust to outliers:

Mean vs median

- Median more robust to outliers:
- Example 1: data $=\{0,1,2,3,5\}$. Mean? Median?

Mean vs median

- Median more robust to outliers:
- Example 1: data $=\{0,1,2,3,5\}$. Mean? Median?
- Example 2: data $=\{0,1,2,3,100\}$. Mean? Median?

Mean vs median

- Median more robust to outliers:
- Example 1: data $=\{0,1,2,3,5\}$. Mean? Median?
- Example 2: data $=\{0,1,2,3,100\}$. Mean? Median?
- What does Mark Zuckerberg do to the mean vs median income?

```
ggplot(gapminder, aes(x = lifeExp)) +
    geom_histogram(binwidth = 1) +
    geom_vline(aes(xintercept = mean(lifeExp)), color = "indianred") +
    geom_vline(aes(xintercept = median(lifeExp)), color = "dodgerblue")
```


summary(gapminder\$lifeExp)

\#\#	Min.	1st Qu.	Median	Mean 3rd Qu.	Max.
$\# \#$	23.6	48.2	60.7	59.5	70.8

```
ggplot(gapminder, aes(x = gdpPercap)) +
    geom_histogram(binwidth = 5000) +
    geom_vline(aes(xintercept = mean(gdpPercap)), color = "indianred") +
    geom_vline(aes(xintercept = median(gdpPercap)), color = "dodgerblue")
```


summary(gapminder\$gdpPercap)

\#\#	Min.	1st Qu.	Median	Mean 3rd Qu.	Max.	
$\# \#$	241	1202	3532	7215	9325	113523

Which distribution would you prefer?

Lottery where we randomly draw one value from A or B :

Which distribution would you prefer?

Lottery where we randomly draw one value from A or B:

They have the same mean, so why do we care about the difference? Spread!!

Spread of the data

- Are the values of the variable close to the center?

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
- 25 th percentile $=$ lower quartile (25% of the data below this value)

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
- 25 th percentile $=$ lower quartile (25% of the data below this value)
- 50 th percentile $=$ median $(50 \%$ of the data below this value)

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
- 25 th percentile $=$ lower quartile (25% of the data below this value)
- 50 th percentile $=$ median $(50 \%$ of the data below this value)
- 75 th percentile $=$ upper quartile (75% of the data below this value)

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
- 25 th percentile $=$ lower quartile (25% of the data below this value)
- 50 th percentile $=$ median $(50 \%$ of the data below this value)
- 75 th percentile $=$ upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
- 25 th percentile $=$ lower quartile (25% of the data below this value)
- 50 th percentile $=$ median $(50 \%$ of the data below this value)
- 75 th percentile $=$ upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
- How spread out is the middle half of the data?

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
- 25 th percentile $=$ lower quartile (25% of the data below this value)
- 50 th percentile $=$ median $(50 \%$ of the data below this value)
- 75 th percentile $=$ upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
- How spread out is the middle half of the data?
- Is most of the data really close to the median or are the values spread out?

Spread of the data

- Are the values of the variable close to the center?
- Range: $[\min (X), \max (X)]$
- Quantile (quartile, percentile, etc): divide data into equal sized groups.
- 25 th percentile $=$ lower quartile (25% of the data below this value)
- 50 th percentile $=$ median $(50 \%$ of the data below this value)
- 75 th percentile $=$ upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
- How spread out is the middle half of the data?
- Is most of the data really close to the median or are the values spread out?
- R function: range(), summary(), IQR()

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Steps:

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Steps:

1. Subtract each data point by the mean.

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Steps:

1. Subtract each data point by the mean.
2. Square each resulting difference.

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Steps:

1. Subtract each data point by the mean.
2. Square each resulting difference.
3. Take the sum of these values

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Steps:

1. Subtract each data point by the mean.
2. Square each resulting difference.
3. Take the sum of these values
4. Divide by $n-1$ (or n, doesn't matter much)

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Steps:

1. Subtract each data point by the mean.
2. Square each resulting difference.
3. Take the sum of these values
4. Divide by $n-1$ (or n, doesn't matter much)
5. Take the square root.

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Steps:

1. Subtract each data point by the mean.
2. Square each resulting difference.
3. Take the sum of these values
4. Divide by $n-1$ (or n, doesn't matter much)
5. Take the square root.

- Variance = standard deviation ${ }^{2}$

Standard deviation

- Standard deviation: On average, how far away are data points from the mean?

$$
\text { standard deviation }=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Steps:

1. Subtract each data point by the mean.
2. Square each resulting difference.
3. Take the sum of these values
4. Divide by $n-1$ (or n, doesn't matter much)
5. Take the square root.

- Variance = standard deviation ${ }^{2}$
- Why not just take the average deviations from mean without squaring?

2/ Missing data

- Nonresponse: respondent can't or won't answer question.
- Nonresponse: respondent can't or won't answer question.
- Sensitive questions \rightsquigarrow social desirability bias
- Nonresponse: respondent can't or won't answer question.
- Sensitive questions \rightsquigarrow social desirability bias
- Some countries lack official statistics like unemployment.
- Nonresponse: respondent can't or won't answer question.
- Sensitive questions \rightsquigarrow social desirability bias
- Some countries lack official statistics like unemployment.
- Leads to missing data.
- Nonresponse: respondent can't or won't answer question.
- Sensitive questions \rightsquigarrow social desirability bias
- Some countries lack official statistics like unemployment.
- Leads to missing data.
- Missing data in R: a special value NA

Missing data

- Nonresponse: respondent can't or won't answer question.
- Sensitive questions \rightsquigarrow social desirability bias
- Some countries lack official statistics like unemployment.
- Leads to missing data.
- Missing data in R: a special value NA
- Have already seen how to use na.rm = TRUE

Afghan study

library(gov50data)
 ```cces_2020```

\#\# \# A tibble: 51,551 x 6
\#\# gender race educ pid3 turno~1 pres_~2
\#\# <fct> <fct> <fct>
\#\# 1 Male White 2-year
\#\# 2 Female White Post-grad
\#\# 3 Female White 4-year
\#\# 4 Female White 4-year
\#\# 5 Male White 4-year
\#\# 6 Male White Some college
\#\# 7 Male Black Some college
\#\# 8 Female White Some college
<fct> <dbl> <fct>
Republ~ 1 Donald~
Democr~ NA <NA>
Indepe~ 1 Joe Bi~
Democr~ 1 Joe Bi~
Indepe~ 1 Other
Republ~ 1 Donald~
Not su~ NA <NA>
Indepe~ 1 Donald~
\#\# 9 Female White High school graduate Republ~ 1 Donald~
\#\# 10 Female White 4-year Democr~ 1 Joe Bi~
\#\# \# ... with 51,541 more rows, and abbreviated variable names
\#\# \# 1: turnout_self, 2: pres_vote

drop_na() to remove rows with missing values

cces_2020 |>
 drop_na()

Drop rows based on certain variables

```
cces_2020 |>
    dim_desc()
```

\#\# [1] "[51,551 x 6]"

```
cces_2020 |>
    drop_na() |>
    dim_desc()
```

\#\# [1] "[45,651 x 6]"

```
cces_2020 |>
    drop_na(turnout_self) |>
    dim_desc()
```

\#\# [1] "[48,462 x 6]"

Available-case vs complete-case analysis

Available-case analysis: use the data you have for that variable:

```
cces_2020 |>
    summarize(mean(turnout_self, na.rm = TRUE)) |>
    pull()
```

\#\# [1] 0.942

Available-case vs complete-case analysis

Available-case analysis: use the data you have for that variable:

```
cces_2020 |>
    summarize(mean(turnout_self, na.rm = TRUE)) |>
    pull()
```

\#\# [1] 0.942

Complete-case analysis: only use units that have data on all variables

```
cces_2020 |>
    drop_na() |>
    summarize(mean(turnout_self)) |>
    pull()
```

\#\# [1] 0.999

Available-case vs complete-case analysis

Available-case analysis: use the data you have for that variable:

```
cces_2020 |>
    summarize(mean(turnout_self, na.rm = TRUE)) |>
    pull()
```

\#\# [1] 0.942

Complete-case analysis: only use units that have data on all variables

```
cces_2020 |>
    drop_na() |>
    summarize(mean(turnout_self)) |>
    pull()
```

\#\# [1] 0.999
(also called listwise deletion)

is .na() to detect missingness

Trying to detect missingness with $==$ doesn't work:

```
c(5, 6, NA, 0) == NA
```

\#\# [1] NA NA NA NA

is .na() to detect missingness

Trying to detect missingness with $==$ doesn't work:

```
c(5, 6, NA, 0) == NA
## [1] NA NA NA NA
Use is.na() instead:
is.na(c(5, 6, NA, 0))
## [1] FALSE FALSE TRUE FALSE
```


is . na() to detect missingness

Trying to detect missingness with $==$ doesn't work:

```
c(5, 6, NA, 0) == NA
## [1] NA NA NA NA
Use is.na() instead:
is.na(c(5, 6, NA, 0))
## [1] FALSE FALSE TRUE FALSE
Can use sum( ) or mean( ) on this to get number/proportion missing:
```

```
sum(is.na(c(5, 6, NA, 0)))
```

sum(is.na(c(5, 6, NA, 0)))

[1] 1

```

\section*{Nonresponse bias}

Nonresponse can create bias if lower turnout \(\Rightarrow\) more non-response:
```

cces_2020 |>
group_by(pid3) |>
summarize(
mean_turnout = mean(turnout_self, na.rm = TRUE),
missing_turnout = mean(is.na(turnout_self))
)

```
\begin{tabular}{|c|c|c|}
\hline \#\# pid3 & mean_turnout & missing_turnout \\
\hline \#\# <fct> & <dbl> & <dbl> \\
\hline \#\# 1 Democrat & 0.963 & 0.0280 \\
\hline \#\# 2 Republican & 0.953 & 0.0403 \\
\hline \#\# 3 Independent & 0.924 & 0.0718 \\
\hline \#\# 4 Other & 0.957 & 0.0709 \\
\hline \#\# 5 Not sure & 0.630 & 0.431 \\
\hline
\end{tabular}

3/ Proportion tables

\section*{Review of getting counts}

First, let's review how to get counts:
```

cces_2020 |>
group_by(pres_vote) |>
summarize(n = n())

```
\#\# \# A tibble: \(7 \times 2\)
\#\# pres_vote n
\#\# <fct> <int>
\#\# 1 Joe Biden (Democrat) 26188
\#\# 2 Donald J. Trump (Republican) 17702
\#\# 3 Other 1458
\#\# 4 I did not vote in this race 100
\#\# 5 I did not vote 13
\#\# 6 Not sure 190
\#\# 7 <NA> 5900

\section*{First attempt to create proportions}
```

cces_2020 |>
group_by(pres_vote) |>
summarize(prop = n() / sum(n()))

```
\#\# \# A tibble: \(7 \times 2\)
\#\# pres_vote prop
\#\# <fct> <dbl>
\#\# 1 Joe Biden (Democrat) 1
\#\# 2 Donald J. Trump (Republican) 1
\#\# 3 Other 1
\#\# 4 I did not vote in this race 1
\#\# 5 I did not vote 1
\#\# 6 Not sure 1
\#\# 7 <NA> 1

\section*{First attempt to create proportions}
```

cces_2020 |>
group_by(pres_vote) |>
summarize(prop = n() / sum(n()))

```
\#\# \# A tibble: \(7 \times 2\)
\#\# pres_vote prop
\#\# <fct> <dbl>
\#\# 1 Joe Biden (Democrat) 1
\#\# 2 Donald J. Trump (Republican) 1
\#\# 3 Other 1
\#\# 4 I did not vote in this race 1
\#\# 5 I did not vote 1
\#\# 6 Not sure 1
\#\# 7 <NA> 1

Inside summarize( ) all operations are done within groups!

\section*{Mutate after summarizing}
```

cces_2020 |>
group_by(pres_vote) |>
summarize(n = n()) |>
mutate(prop = n / sum(n))

```
\#\# \# A tibble: 7 x 3
\#\# pres_vote n prop
\#\# <fct> <int> <dbl>
\#\# 1 Joe Biden (Democrat) 261880.508
\#\# 2 Donald J. Trump (Republican) 177020.343
\#\# 3 Other 14580.0283
\#\# 4 I did not vote in this race 1000.00194
\#\# 5 I did not vote
\#\# 6 Not sure
\#\# 7 <NA>
\begin{tabular}{rl}
\(n\) & \multicolumn{1}{r}{ prop } \\
<int> & \multicolumn{1}{c}{ <dbl> }
\end{tabular}

\section*{Mutate after summarizing}
```

cces_2020 |>
group_by(pres_vote) |>
summarize(n = n()) |>
mutate(prop = n / sum(n))

```
\#\# \# A tibble: \(7 \times 3\)
\#\# pres_vote n prop
\#\# <fct> <int> <dbl>
\#\# 1 Joe Biden (Democrat) 261880.508
\#\# 2 Donald J. Trump (Republican) 177020.343
\#\# 3 Other 14580.0283
\#\# 4 I did not vote in this race 1000.00194
\#\# 5 I did not vote
\#\# 6 Not sure
\#\# 7 <NA>
\begin{tabular}{rl}
\(n\) & \multicolumn{1}{r}{\begin{tabular}{r} 
prop \\
<int>
\end{tabular}} \\
26188 & \multicolumn{1}{c}{ <dbl> }
\end{tabular}

Grouping is silently dropped after summarize( )

\section*{Multiple grouping variables}

What happens with multiple grouping variables
```

cces_2020 |>
filter(pres_vote %in% c("Joe Biden (Democrat)",
"Donald J. Trump (Republican)")) |>
group_by(pid3, pres_vote) |>
summarize(n = n()) |>
mutate(prop = n / sum(n))

```
```


\# A tibble: 10 x 4

\# Groups: pid3 [5]

pid3 pres_vote n prop

<fct> <fct> <int> <dbl>

1 Democrat Joe Biden (Democrat) 17649 0.968

2 Democrat Donald J. Trump (Republican) 581 0.0319

3 Republican Joe Biden (Democrat) 856 0.0712

4 Republican Donald J. Trump (Republican) 11164 0.929

5 Independent Joe Biden (Democrat) 6601 0.571

6 Independent Donald J. Trump (Republican) 4951 0.429

7 Other Joe Biden (Democrat) 735 0.487

8 Other Donald J. Trump (Republican) 774 0.513

9 Not sure Joe Biden (Democrat) 347 0.599

10 Not sure Donald J. Trump (Republican) 232 0.401

```
```


\# A tibble: 10 x 4

\# Groups: pid3 [5]

pid3 pres_vote n prop

<fct> <fct> <int> <dbl>

1 Democrat Joe Biden (Democrat) 17649 0.968

2 Democrat Donald J. Trump (Republican) 581 0.0319

3 Republican Joe Biden (Democrat) 856 0.0712

4 Republican Donald J. Trump (Republican) 11164 0.929

5 Independent Joe Biden (Democrat) 6601 0.571

6 Independent Donald J. Trump (Republican) 4951 0.429

7 Other Joe Biden (Democrat) 735 0.487

8 Other Donald J. Trump (Republican) 774 0.513

9 Not sure Joe Biden (Democrat) 347 0.599

10 Not sure Donald J. Trump (Republican) 232 0.401

```

With multiple grouping variables, summarize( ) drops the last one.

\section*{Dropping all groups}

If we want the proportion of all rows, need to drop all groups.
```

cces_2020 |>
filter(pres_vote %in% c("Joe Biden (Democrat)",
"Donald J. Trump (Republican)")) |>
group_by(pid3, pres_vote) |>
summarize(n = n(), .groups = "drop") |>
mutate(prop = n / sum(n))

```
\begin{tabular}{|c|c|c|c|c|}
\hline \#\# & pid3 & pres_vote & n & prop \\
\hline \#\# & <fct> & <fct> & <int> & <dbl> \\
\hline \#\# & 1 Democrat & Joe Biden (Democrat) & 17649 & 0.402 \\
\hline \#\# & 2 Democrat & Donald J. Trump (Republican) & 581 & 0.0132 \\
\hline \#\# & 3 Republican & Joe Biden (Democrat) & 856 & 0.0195 \\
\hline \#\# & 4 Republican & Donald J. Trump (Republican) & 11164 & 0.254 \\
\hline \#\# & 5 Independent & Joe Biden (Democrat) & 6601 & 0.150 \\
\hline \#\# & 6 Independent & Donald J. Trump (Republican) & 4951 & 0.113 \\
\hline \#\# & 7 Other & Joe Biden (Democrat) & 735 & 0.0167 \\
\hline \#\# & 8 Other & Donald J. Trump (Republican) & 774 & 0.0176 \\
\hline & 9 Not sure & Joe Biden (Democrat) & 347 & 0.00791 \\
\hline & 10 Not sure & Donald J. Trump (Republican) & 232 & 0.00529 \\
\hline
\end{tabular}```

