Gov 50: 7. Observational Studies

Matthew Blackwell

Harvard University

- 1. Calculating effects
- 2. Observational Studies

1/ Calculating effects

reinstall gov50data if necessary
library(gov50data)

Variable Name	Description
age	Age of the R in years
female	1=R marked "Female" on voter reg., 0 otherwise
voted_gen_14	1 if R voted in the 2014 general election
vote_gen_12	1 if R voted in the 2012 general election
treat_ind	1 if R assigned to trans rights script, 0 for recycling
racename	name of racial identity indicated on voter file
democrat	1 if R is a registered Democrat
nondiscrim_pre	1 if R supports nondiscrim. law at baseline
nondiscrim_post	1 if R supports nondiscrim. law after 3 months

trans

## # A tibble: 565 x 9										
##		age f	emale voted	_gen_14	voted_g	~1	treat~2	racen~3	democ~4	nondi~5
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db< td=""><td>1></td><td><dbl></dbl></td><td><chr></chr></td><td><dbl></dbl></td><td><dbl></dbl></td></db<>	1>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	29	Θ	Θ		1	Θ	Africa~	1	1
##	2	59	1	1		0	1	Africa~	1	1
##	3	35	1	1		1	1	Africa~	1	Θ
##	4	63	1	1		1	1	Africa~	1	Θ
##	5	65	Θ	1		1	1	Africa~	Θ	1
##	6	51	1	1		1	Θ	Caucas~	Θ	1
##	7	26	1	1		1	Θ	Africa~	1	1
##	8	62	1	1		1	1	Africa~	1	1
##	9	37	Θ	1		1	Θ	Caucas~	Θ	1
##	10	51	1	1		1	Θ	Caucas~	Θ	Θ
##	# .	wit	h 555 more i	rows, 1	more vai	rial	ble: nor	discrim_	_post <db< td=""><td>l>, and</td></db<>	l>, and
##	<pre>## # abbreviated variable names 1: voted_gen_12, 2: treat_ind,</pre>									
##	<pre>## # 3: racename, 4: democrat, 5: nondiscrim_pre</pre>									

Calculate the average outcomes in each group

```
treat_mean <- trans |>
  filter(treat_ind == 1) |>
  summarize(nondiscrim_mean = mean(nondiscrim_post))
treat_mean
```

```
## # A tibble: 1 x 1
## nondiscrim_mean
## <dbl>
## 1 0.687
```

Calculate the average outcomes in each group

```
treat mean <- trans |>
  filter(treat ind == 1) |>
  summarize(nondiscrim_mean = mean(nondiscrim_post))
treat mean
## # A tibble: 1 x 1
##
    nondiscrim mean
               < dbl >
##
               0.687
## 1
control mean <- trans |>
  filter(treat ind == 0) |>
  summarize(nondiscrim mean = mean(nondiscrim post))
control mean
```

```
## # A tibble: 1 x 1
## nondiscrim_mean
## <dbl>
## 1 0.648
```

Calculating the difference in means

treat_mean - control_mean

nondiscrim_mean

1 0.039

We'll see more ways to do this throughout the semester.

Checking balance on numeric covariates

We can use group_by to see how the mean of covariates varies by group:

```
trans |>
  group_by(treat_ind) |>
  summarize(age_mean = mean(age))
```

```
## # A tibble: 2 x 2
## treat_ind age_mean
## <dbl> <dbl>
## 1 0 48.2
## 2 1 48.3
```

Checking balance on categorical covariates

Or we can group by treatment and a categorical control:

```
trans |>
  group_by(treat_ind, racename) |>
  summarize(n = n())
```

##	#	A tibble:	9 x 3	
##	#	Groups:	treat_ind [2]	
##		treat_ind	racename	n
##		<dbl></dbl>	<chr></chr>	<int></int>
##	1	Θ	African American	58
##	2	Θ	Asian	2
##	3	Θ	Caucasian	77
##	4	Θ	Hispanic	150
##	5	1	African American	68
##	6	1	Asian	4
##	7	1	Caucasian	75
##	8	1	Hispanic	130
##	9	1	Native American	1

Hard to read!

pivot_wider() takes data from a single column and moves it into multiple columns based on a grouping variable:

```
trans |>
  group_by(treat_ind, racename) |>
  summarize(n = n()) |>
  pivot_wider(
    names_from = treat_ind,
    values_from = n
)
```

pivot_wider() takes data from a single column and moves it into multiple columns based on a grouping variable:



names_from tells us what variable will map onto the columns
values_from tell us what values should be mapped into those columns

```
trans |>
 group_by(treat_ind, racename) |>
 summarize(n = n()) |>
 pivot_wider(
   names_from = treat_ind,
   values_from = n
)
```

##	#	A tibble: 5 x 3		
##		racename	`0`	`1`
##		<chr></chr>	<int></int>	<int></int>
##	1	African American	58	68
##	2	Asian	2	4
##	3	Caucasian	77	75
##	4	Hispanic	150	130
##	5	Native American	NA	1

Calculating diff-in-means by group

```
trans |>
 mutate(
    treat ind = if else(treat ind == 1, "Treated", "Control"),
    party = if else(democrat == 1, "Democrat", "Non-Democrat")
  group by(treat ind, party) |>
  summarize(nondiscrim mean = mean(nondiscrim post)) |>
 pivot wider(
   names from = treat ind,
    values from = nondiscrim mean
 mutate(
   diff in means = Treated - Control
```

```
## # A tibble: 2 x 4
## party Control Treated diff_in_means
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Democrat 0.704 0.754 0.0498
## 2 Non-Democrat 0.605 0.628 0.0234
```

##	#	A tibble: 2	x 4		
##		party	Control	Treated	diff_in_means
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Democrat	0.704	0.754	0.0498
##	2	Non-Democrat	0.605	0.628	0.0234

· Can newspaper endorsements change voters' minds?

- Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?

- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
 - Problem: readers choose papers based on their previous beliefs.

- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
 - Problem: readers choose papers based on their previous beliefs.
 - Liberals \rightsquigarrow New York Times, conservatives \rightsquigarrow Wall Street Journal.

- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
 - Problem: readers choose papers based on their previous beliefs.
 - Liberals \rightsquigarrow New York Times, conservatives \rightsquigarrow Wall Street Journal.
- Study for today: British newspapers switching their endorsements.

- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
 - Problem: readers choose papers based on their previous beliefs.
 - Liberals \rightsquigarrow New York Times, conservatives \rightsquigarrow Wall Street Journal.
- Study for today: British newspapers switching their endorsements.
 - Some newspapers endorsing Tories in 1992 switched to Labour in 1997.

- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
 - Problem: readers choose papers based on their previous beliefs.
 - Liberals \rightsquigarrow New York Times, conservatives \rightsquigarrow Wall Street Journal.
- Study for today: British newspapers switching their endorsements.
 - Some newspapers endorsing Tories in 1992 switched to Labour in 1997.
 - **Treated group**: readers of Tory \rightarrow Labour papers.

- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
 - Problem: readers choose papers based on their previous beliefs.
 - Liberals \rightsquigarrow New York Times, conservatives \rightsquigarrow Wall Street Journal.
- Study for today: British newspapers switching their endorsements.
 - Some newspapers endorsing Tories in 1992 switched to Labour in 1997.
 - **Treated group**: readers of Tory \rightarrow Labour papers.
 - Control group: readers of papers who didn't switch.

Name	Description
to_labour	Read a newspaper that switched endorsement to Labour between 1992 and 1997 (1=Yes, 0=No)?
vote_lab_92	Did respondent vote for Labour in 1992 election (1=Yes, 0=No)?
vote_lab_97	Did respondent vote for Labour in 1997 election (1=Yes, 0=No)?
age	Age of respondent
male	Does the respondent identify as Male (1=Yes, 0=No)?
parent_labour	Did the respondent's parents vote for Labour (1=Yes, 0=No)?
work_class	Does the respondent identify as working class (1=Yes, 0=No)?

library(tidyverse) library(gov50data) newspapers

##	# A	tibble:	1,593 x 7						
##	t	to_labour	vote_lab_92	vote_	lab_97	age	male pa	arent_~1	work_~2
##		<dbl></dbl>	<dbl></dbl>		<dbl></dbl>	<dbl+lbl></dbl+lbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Θ	1		1	33	Θ	1	1
##	2	Θ	1		Θ	51	Θ	1	Θ
##	3	Θ	Θ		Θ	46	Θ	1	1
##	4	0	1		1	45	1	1	1
##	5	Θ	1		1	29	Θ	1	1
##	6	Θ	1		1	47	1	1	1
##	7	Θ	1		1	34	1	Θ	1
##	8	0	1		1	31	Θ	1	1
##	9	Θ	1		1	24	1	1	1
##	10	1	1		1	48	Θ	1	1
##	# .	with 1	,583 more r	ows, a	ind abb	reviated	variable	names	
##	#	1: paren	nt_labour, 2	: work	_class				

• Example of an **observational study**:

- Example of an **observational study**:
 - We as researchers observe a naturally assigned treatment

- Example of an **observational study**:
 - We as researchers observe a naturally assigned treatment
 - Very common: often can't randomize for ethical/logistical reasons.

- Example of an **observational study**:
 - We as researchers observe a naturally assigned treatment
 - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?

- Example of an observational study:
 - We as researchers observe a naturally assigned treatment
 - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
 - RCTs usually have higher internal validity.

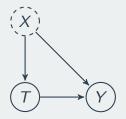
- Example of an observational study:
 - We as researchers observe a naturally assigned treatment
 - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
 - RCTs usually have higher internal validity.
 - Observational studies less so because treatment and control groups may differ in ways that are hard to measure

- Example of an observational study:
 - We as researchers observe a naturally assigned treatment
 - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
 - RCTs usually have higher internal validity.
 - Observational studies less so because treatment and control groups may differ in ways that are hard to measure
- **External validity**: can the conclusions/estimated effects be generalized beyond this study?

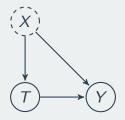
- Example of an observational study:
 - We as researchers observe a naturally assigned treatment
 - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
 - RCTs usually have higher internal validity.
 - Observational studies less so because treatment and control groups may differ in ways that are hard to measure
- **External validity**: can the conclusions/estimated effects be generalized beyond this study?
 - RCTs weaker here because often very expensive to conduct on representative samples.

- Example of an observational study:
 - We as researchers observe a naturally assigned treatment
 - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
 - RCTs usually have higher internal validity.
 - Observational studies less so because treatment and control groups may differ in ways that are hard to measure
- **External validity**: can the conclusions/estimated effects be generalized beyond this study?
 - RCTs weaker here because often very expensive to conduct on representative samples.
 - Observational studies often have larger/more representative samples that improve external validity.

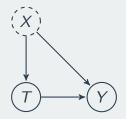
Confounding



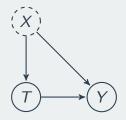
• **Confounder**: pre-treatment variable affecting treatment & the outcome.



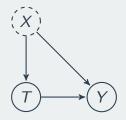
- · Confounder: pre-treatment variable affecting treatment & the outcome.
 - Leftists (X) more likely to read newspapers switching to Labour (T).



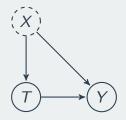
- · Confounder: pre-treatment variable affecting treatment & the outcome.
 - Leftists (X) more likely to read newspapers switching to Labour (T).
 - Leftists (X) also more likely to vote for Labour (Y).



- · Confounder: pre-treatment variable affecting treatment & the outcome.
 - Leftists (X) more likely to read newspapers switching to Labour (T).
 - Leftists (X) also more likely to vote for Labour (Y).
- Confounding bias in the estimated SATE due to these differences



- · Confounder: pre-treatment variable affecting treatment & the outcome.
 - Leftists (X) more likely to read newspapers switching to Labour (T).
 - Leftists (X) also more likely to vote for Labour (Y).
- **Confounding bias** in the estimated SATE due to these differences
 - $\overline{Y}_{\text{control}}$ not a good proxy for $\frac{1}{n} \sum_{i=1}^{n} Y_i(0)$ in treated group.



- · Confounder: pre-treatment variable affecting treatment & the outcome.
 - Leftists (X) more likely to read newspapers switching to Labour (T).
 - Leftists (X) also more likely to vote for Labour (Y).
- **Confounding bias** in the estimated SATE due to these differences
 - $\overline{Y}_{\text{control}}$ not a good proxy for $\frac{1}{n} \sum_{i=1}^{n} Y_i(0)$ in treated group.
 - one type: selection bias from self-selection into treatment

• How can we find a good comparison group?

- How can we find a good comparison group?
- Depends on the data we have available.

- How can we find a good comparison group?
- Depends on the data we have available.
- Three general types of observational study **reseach designs**:

- How can we find a good comparison group?
- Depends on the data we have available.
- Three general types of observational study **reseach designs**:
 - 1. **Cross-sectional design**: compare outcomes treated and control units at one point in time.

- How can we find a good comparison group?
- Depends on the data we have available.
- Three general types of observational study **reseach designs**:
 - 1. **Cross-sectional design**: compare outcomes treated and control units at one point in time.
 - 2. **Before-and-after design**: compare outcomes before and after a unit has been treated, but need over-time data on treated group.

- How can we find a good comparison group?
- Depends on the data we have available.
- Three general types of observational study **reseach designs**:
 - 1. **Cross-sectional design**: compare outcomes treated and control units at one point in time.
 - 2. **Before-and-after design**: compare outcomes before and after a unit has been treated, but need over-time data on treated group.
 - 3. **Difference-in-differences design**: use before/after information for the treated and control group; need over-time on treated & control group.

• Compare treatment and control groups after treatment happens.

- Compare treatment and control groups after treatment happens.
 - Readers of switching papers vs readers of non-switching papers in 1997.

- Compare treatment and control groups after treatment happens.
 - Readers of switching papers vs readers of non-switching papers in 1997.
- Treatment & control groups assumed identical on average as in RCT.

- Compare treatment and control groups after treatment happens.
 - Readers of switching papers vs readers of non-switching papers in 1997.
- Treatment & control groups assumed identical on average as in RCT.
 - Sometimes called unconfoundedness or as-if randomized.

- Compare treatment and control groups after treatment happens.
 - Readers of switching papers vs readers of non-switching papers in 1997.
- Treatment & control groups assumed identical on average as in RCT.
 - Sometimes called unconfoundedness or as-if randomized.
- Cross-section comparison estimate:

$$\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{control}}^{\text{after}}$$

- · Compare treatment and control groups after treatment happens.
 - Readers of switching papers vs readers of non-switching papers in 1997.
- Treatment & control groups assumed identical on average as in RCT.
 - Sometimes called unconfoundedness or as-if randomized.
- Cross-section comparison estimate:

$$\overline{Y}_{treated}^{after} - \overline{Y}_{control}^{after}$$

• Could there be confounders?

```
switched <- newspapers |>
filter(to_labour == 1) |>
summarize(mean(vote_lab_97))
```

```
no_change <- newspapers %>%
filter(to_labour == 0) |>
summarize(mean(vote_lab_97))
```

switched - no_change

mean(vote_lab_97)
1 0.14

• Statistical control: adjust for confounders using statistical procedures.

- Statistical control: adjust for confounders using statistical procedures.
 - Can help to reduce confounding bias.

- Statistical control: adjust for confounders using statistical procedures.
 - Can help to reduce confounding bias.
- One type of statistical control: **subclassification**

- Statistical control: adjust for confounders using statistical procedures.
 - Can help to reduce confounding bias.
- One type of statistical control: **subclassification**
 - Compare treated and control groups within levels of a confounder.

- Statistical control: adjust for confounders using statistical procedures.
 - Can help to reduce confounding bias.
- One type of statistical control: **subclassification**
 - Compare treated and control groups within levels of a confounder.
 - Remaining effect can't be due to the confounder.

- Statistical control: adjust for confounders using statistical procedures.
 - Can help to reduce confounding bias.
- One type of statistical control: subclassification
 - · Compare treated and control groups within levels of a confounder.
 - Remaining effect can't be due to the confounder.
- Threat to inference: we can only control for observed variables \rightsquigarrow threat of unmeasured confounding

```
newspapers %>%
group_by(parent_labour, to_labour) %>%
summarize(avg_vote = mean(vote_lab_97)) %>%
pivot_wider(
    names_from = to_labour,
    values_from = avg_vote
) %>%
mutate(diff_by_parent = `1` - `0`)
```

· Compare readers of party-switching newspapers before & after switch.

- Compare readers of party-switching newspapers before & after switch.
- · Advantage: all person-specific features held fixed

- Compare readers of party-switching newspapers before & after switch.
- Advantage: all person-specific features held fixed
 - comparing within a person over time.

- Compare readers of party-switching newspapers before & after switch.
- · Advantage: all person-specific features held fixed
 - comparing within a person over time.
- Before-and-after estimate:

$$\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}$$

- Compare readers of party-switching newspapers before & after switch.
- · Advantage: all person-specific features held fixed
 - comparing within a person over time.
- Before-and-after estimate:

$$\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}$$

Threat to inference: time-varying confounders

- Compare readers of party-switching newspapers before & after switch.
- Advantage: all person-specific features held fixed
 - comparing within a person over time.
- Before-and-after estimate:

$$\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}$$

- Threat to inference: time-varying confounders
 - Time trend: Labour just did better overall in 1997 compared to 1992.

```
newspapers |>
  mutate(
    vote_change = vote_lab_97 - vote_lab_92
) |>
  summarize(avg_change = mean(vote_change))
```

```
## # A tibble: 1 x 1
## avg_change
## <dbl>
## 1 0.119
```

 Key idea: use the before-and-after difference of control group to infer what would have happend to treatment group without treatment.

- Key idea: use the before-and-after difference of control group to infer what would have happend to treatment group without treatment.
- DiD estimate:

$$\underbrace{\left(\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}\right)}_{\text{trend in treated group}} - \underbrace{\left(\overline{Y}_{\text{control}}^{\text{after}} - \overline{Y}_{\text{control}}^{\text{before}}\right)}_{\text{trend in control group}}$$

- Key idea: use the before-and-after difference of **control group** to infer what would have happend to **treatment group** without treatment.
- DiD estimate:

$$\underbrace{\left(\overline{Y}_{treated}^{after} - \overline{Y}_{treated}^{before}\right)}_{trend in treated group} - \underbrace{\left(\overline{Y}_{control}^{after} - \overline{Y}_{control}^{before}\right)}_{trend in control group}$$

• Change in treated group above and beyond the change in control group.

- Key idea: use the before-and-after difference of **control group** to infer what would have happend to **treatment group** without treatment.
- DiD estimate:

$$\underbrace{\left(\overline{Y}_{treated}^{after} - \overline{Y}_{treated}^{before}\right)}_{trend in treated group} - \underbrace{\left(\overline{Y}_{control}^{after} - \overline{Y}_{control}^{before}\right)}_{trend in control group}$$

- Change in treated group above and beyond the change in control group.
- Parallel time trend assumption

Differences in differences

- Key idea: use the before-and-after difference of **control group** to infer what would have happend to **treatment group** without treatment.
- DiD estimate:

$$\underbrace{\left(\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}\right)}_{\text{trend in treated group}} - \underbrace{\left(\overline{Y}_{\text{control}}^{\text{after}} - \overline{Y}_{\text{control}}^{\text{before}}\right)}_{\text{trend in control group}}$$

- Change in treated group above and beyond the change in control group.
- Parallel time trend assumption
 - Changes in vote of readers of non-switching papers roughly the same as changes that readers of switching papers would have been if they read non-switching papers.

Differences in differences

- Key idea: use the before-and-after difference of **control group** to infer what would have happend to **treatment group** without treatment.
- DiD estimate:

$$\underbrace{\left(\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}\right)}_{\text{trend in treated group}} - \underbrace{\left(\overline{Y}_{\text{control}}^{\text{after}} - \overline{Y}_{\text{control}}^{\text{before}}\right)}_{\text{trend in control group}}$$

- Change in treated group above and beyond the change in control group.
- Parallel time trend assumption
 - Changes in vote of readers of non-switching papers roughly the same as changes that readers of switching papers would have been if they read non-switching papers.
 - Threat to inference: non-parallel trends.

Difference-in-differences in R

```
newspapers |>
mutate(
    vote_change = vote_lab_97 - vote_lab_92,
    to_labour = if_else(to_labour == 1, "switched", "unswitched")
) |>
group_by(to_labour) |>
summarize(avg_change = mean(vote_change)) |>
pivot_wider(
    names_from = to_labour,
    values_from = avg_change
) |>
mutate(DID = switched - unswitched)
```

```
## # A tibble: 1 x 3
## switched unswitched DID
## <dbl> <dbl> <dbl>
## 1 0.190 0.110 0.0796
```

- 1. Cross-sectional comparison
 - · Compare treated units with control units after treatment

- · Compare treated units with control units after treatment
- Assumption: treated and controls units are comparable

- · Compare treated units with control units after treatment
- Assumption: treated and controls units are comparable
- Possible confounding

- · Compare treated units with control units after treatment
- Assumption: treated and controls units are comparable
- Possible confounding
- 2. Before-and-after comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding
- 2. Before-and-after comparison
 - · Compare the same units before and after treatment

1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

2. Before-and-after comparison

- · Compare the same units before and after treatment
- Assumption: no time-varying confounding

1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

2. Before-and-after comparison

- · Compare the same units before and after treatment
- Assumption: no time-varying confounding

1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

2. Before-and-after comparison

- · Compare the same units before and after treatment
- · Assumption: no time-varying confounding

3. Differences-in-differences

• Assumption: parallel trends assumptions

1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

2. Before-and-after comparison

- · Compare the same units before and after treatment
- · Assumption: no time-varying confounding

- Assumption: parallel trends assumptions
- Under this assumption, it accounts for unit-specific and time-varying confounding.

1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

2. Before-and-after comparison

- · Compare the same units before and after treatment
- · Assumption: no time-varying confounding

- Assumption: parallel trends assumptions
- Under this assumption, it accounts for unit-specific and time-varying confounding.
- All rely on assumptions that can't be verified to handle confounding.

1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

2. Before-and-after comparison

- · Compare the same units before and after treatment
- Assumption: no time-varying confounding

- Assumption: parallel trends assumptions
- Under this assumption, it accounts for unit-specific and time-varying confounding.
- All rely on assumptions that can't be verified to handle confounding.
- RCTs handle confounding by design.

