
Gov 50: 2. R, RStudio, and
Rmarkdown
Matthew Blackwell

Harvard University

1 / 27

Roadmap

1. Working in Plain Text

2. Let’s take a touR

3. Using Rmarkdown

4. Getting R bearings

5. Our first visualizations

2 / 27

1/ Working in Plain Text

The two computer revolutions

The frontier of computing
• Touch-based interfaces

• Single app at a time
• Little multitasking between apps
• Hides the file system

Where statistical computing lives

• Windows and pointers
• Multi-tasking, multiple windows
• Works heavily with the file
system

• Underneath it’s UNIX and the
command line

3 / 27

The two computer revolutions

The frontier of computing
• Touch-based interfaces
• Single app at a time

• Little multitasking between apps
• Hides the file system

Where statistical computing lives

• Windows and pointers
• Multi-tasking, multiple windows
• Works heavily with the file
system

• Underneath it’s UNIX and the
command line

3 / 27

The two computer revolutions

The frontier of computing
• Touch-based interfaces
• Single app at a time
• Little multitasking between apps

• Hides the file system

Where statistical computing lives

• Windows and pointers
• Multi-tasking, multiple windows
• Works heavily with the file
system

• Underneath it’s UNIX and the
command line

3 / 27

The two computer revolutions

The frontier of computing
• Touch-based interfaces
• Single app at a time
• Little multitasking between apps
• Hides the file system

Where statistical computing lives

• Windows and pointers
• Multi-tasking, multiple windows
• Works heavily with the file
system

• Underneath it’s UNIX and the
command line

3 / 27

The two computer revolutions

The frontier of computing
• Touch-based interfaces
• Single app at a time
• Little multitasking between apps
• Hides the file system

Where statistical computing lives
• Windows and pointers

• Multi-tasking, multiple windows
• Works heavily with the file
system

• Underneath it’s UNIX and the
command line

3 / 27

The two computer revolutions

The frontier of computing
• Touch-based interfaces
• Single app at a time
• Little multitasking between apps
• Hides the file system

Where statistical computing lives
• Windows and pointers
• Multi-tasking, multiple windows

• Works heavily with the file
system

• Underneath it’s UNIX and the
command line

3 / 27

The two computer revolutions

The frontier of computing
• Touch-based interfaces
• Single app at a time
• Little multitasking between apps
• Hides the file system

Where statistical computing lives
• Windows and pointers
• Multi-tasking, multiple windows
• Works heavily with the file
system

• Underneath it’s UNIX and the
command line

3 / 27

The two computer revolutions

The frontier of computing
• Touch-based interfaces
• Single app at a time
• Little multitasking between apps
• Hides the file system

Where statistical computing lives
• Windows and pointers
• Multi-tasking, multiple windows
• Works heavily with the file
system

• Underneath it’s UNIX and the
command line

3 / 27

Plain-text tools for data analysis

• Often free, open-sourced, and powerful.

• Large, friendly communities around them.
• Tons of resources
• But… far from the touch-based paradigm of
modern computing

• So why use them?

4 / 27

Plain-text tools for data analysis

• Often free, open-sourced, and powerful.
• Large, friendly communities around them.

• Tons of resources
• But… far from the touch-based paradigm of
modern computing

• So why use them?

4 / 27

Plain-text tools for data analysis

• Often free, open-sourced, and powerful.
• Large, friendly communities around them.
• Tons of resources

• But… far from the touch-based paradigm of
modern computing

• So why use them?

4 / 27

Plain-text tools for data analysis

• Often free, open-sourced, and powerful.
• Large, friendly communities around them.
• Tons of resources
• But… far from the touch-based paradigm of
modern computing

• So why use them?

4 / 27

Plain-text tools for data analysis

• Often free, open-sourced, and powerful.
• Large, friendly communities around them.
• Tons of resources
• But… far from the touch-based paradigm of
modern computing

• So why use them?

4 / 27

The process of data
science is instrinsically

messy

4 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model

• Formatted documents are real.
• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model

• Plain-text files are real.
• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model
• Formatted documents are real.

• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model

• Plain-text files are real.
• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model
• Formatted documents are real.
• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model

• Plain-text files are real.
• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model
• Formatted documents are real.
• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model

• Plain-text files are real.
• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model
• Formatted documents are real.
• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model

• Plain-text files are real.
• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model
• Formatted documents are real.
• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model
• Plain-text files are real.

• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model
• Formatted documents are real.
• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model
• Plain-text files are real.
• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model
• Formatted documents are real.
• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model
• Plain-text files are real.
• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Office vs engineering model of computing

What’s real in the project? How are changes managed?

In the Office model
• Formatted documents are real.
• Intermediate ouptuts
copy/pasted into documents.

• Changes are tracked inside
files.

• Final output is the file you are
working on (e.g., Word file or
maybe converted to a PDF).

In the Engineering model
• Plain-text files are real.
• Intermediate outputs are
produced via code, often inside
documents.

• Changes are tracked outside
files.

• Final outputs are assembled
programatically and converted
to desired output format.

5 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.

• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.

• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?

• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?

• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.

• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.

• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!

• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.

• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

Pros and cons to each approach
• Office model:

• Everyone knows Word, Excel, Google Docs.
• “Track changes” is powerful and easy.
• Wait, how did I make this figure?
• Which version of my code made this table?
• Blackwell_report_final_submitted_edits_FINAL_v2.docx

• Engineering model:

• Plain text is universally portable.
• Push button, recreate analysis.
• Why won’t R just do what I want!
• Version control is a pain.
• Object of type 'closure' is not subsettable

We’ll tend toward the Engineering model because it’s better suited to keep
the mess in check.

6 / 27

2/ Let’s take a touR

R versus RStudio

7 / 27

R versus RStudio

7 / 27

8 / 27

9 / 27

10 / 27

11 / 27

12 / 27

3/ Using Rmarkdown

The acts of coding

Figure: 1. Writing code

Figure: 2. Looking at output Figure: 3. Taking notes

How to do all of these efficiently?

13 / 27

The acts of coding

Figure: 1. Writing code Figure: 2. Looking at output

Figure: 3. Taking notes

How to do all of these efficiently?

13 / 27

The acts of coding

Figure: 1. Writing code Figure: 2. Looking at output Figure: 3. Taking notes

How to do all of these efficiently?

13 / 27

The acts of coding

Figure: 1. Writing code Figure: 2. Looking at output Figure: 3. Taking notes

How to do all of these efficiently?

13 / 27

Rmarkdown files to the rescue

Figure: Rmarkdown file

Keep code and notes
together in plain text

Figure: Knit in R

Figure: PDF output

Produce nice-looking
outputs in different

formats

14 / 27

Rmarkdown files to the rescue

Figure: Rmarkdown file

Keep code and notes
together in plain text

Figure: Knit in R

Figure: PDF output

Produce nice-looking
outputs in different

formats

14 / 27

Rmarkdown files to the rescue

Figure: Rmarkdown file

Keep code and notes
together in plain text

Figure: Knit in R

Figure: PDF output

Produce nice-looking
outputs in different

formats

14 / 27

Markdown: formatting in plain text
Non-code text in Rmd files is plain text with formatting instructions

15 / 27

Remember what’s real

17 / 27

4/ Getting R bearings

Try to type your code by
hand

17 / 27

Typing speeds up the try-fail cycle

Physically typing the code is best way to familiarize yourself with R and the
try-fail-try-fail-try-succeed cycle

18 / 27
Credit: Allison Horst

What R looks like

Code that you can type and run:
Any R code that begins with the # character is a comment
Comments are ignored by R

my_numbers <- c(4, 8, 15, 16, 23, 42) # Anything after # is also a comment

Output from code prefixed by ## by convention:
my_numbers

[1] 4 8 15 16 23 42

Output also has a counter in brackets when over one line:
letters

[1] ”a” ”b” ”c” ”d” ”e” ”f” ”g” ”h” ”i” ”j” ”k” ”l”
[13] ”m” ”n” ”o” ”p” ”q” ”r” ”s” ”t” ”u” ”v” ”w” ”x”
[25] ”y” ”z”

19 / 27

What R looks like

Code that you can type and run:
Any R code that begins with the # character is a comment
Comments are ignored by R

my_numbers <- c(4, 8, 15, 16, 23, 42) # Anything after # is also a comment

Output from code prefixed by ## by convention:
my_numbers

[1] 4 8 15 16 23 42

Output also has a counter in brackets when over one line:
letters

[1] ”a” ”b” ”c” ”d” ”e” ”f” ”g” ”h” ”i” ”j” ”k” ”l”
[13] ”m” ”n” ”o” ”p” ”q” ”r” ”s” ”t” ”u” ”v” ”w” ”x”
[25] ”y” ”z”

19 / 27

What R looks like

Code that you can type and run:
Any R code that begins with the # character is a comment
Comments are ignored by R

my_numbers <- c(4, 8, 15, 16, 23, 42) # Anything after # is also a comment

Output from code prefixed by ## by convention:
my_numbers

[1] 4 8 15 16 23 42

Output also has a counter in brackets when over one line:
letters

[1] ”a” ”b” ”c” ”d” ”e” ”f” ”g” ”h” ”i” ”j” ”k” ”l”
[13] ”m” ”n” ”o” ”p” ”q” ”r” ”s” ”t” ”u” ”v” ”w” ”x”
[25] ”y” ”z”

19 / 27

Everything in R has a name

my_numbers # just created this

[1] 4 8 15 16 23 42
letters # this is built into R

[1] ”a” ”b” ”c” ”d” ”e” ”f” ”g” ”h” ”i” ”j” ”k” ”l”
[13] ”m” ”n” ”o” ”p” ”q” ”r” ”s” ”t” ”u” ”v” ”w” ”x”
[25] ”y” ”z”
pi # also built in

[1] 3.14

Some names are forbidden (NA, TRUE, FALSE, etc) or strongly not
recommended (c, mean, table)

20 / 27

Everything in R has a name

my_numbers # just created this

[1] 4 8 15 16 23 42
letters # this is built into R

[1] ”a” ”b” ”c” ”d” ”e” ”f” ”g” ”h” ”i” ”j” ”k” ”l”
[13] ”m” ”n” ”o” ”p” ”q” ”r” ”s” ”t” ”u” ”v” ”w” ”x”
[25] ”y” ”z”
pi # also built in

[1] 3.14

Some names are forbidden (NA, TRUE, FALSE, etc) or strongly not
recommended (c, mean, table)

20 / 27

We do things in R with functions

Functions take in objects, perform actions, and return outputs:
mean(x = my_numbers)

[1] 18

• x is the argument name,

• my_numbers is what we’re passing to the that argument

If you omit the argument name, R will assume the default order:
mean(my_numbers)

[1] 18

21 / 27

We do things in R with functions

Functions take in objects, perform actions, and return outputs:
mean(x = my_numbers)

[1] 18

• x is the argument name,

• my_numbers is what we’re passing to the that argument

If you omit the argument name, R will assume the default order:
mean(my_numbers)

[1] 18

21 / 27

We do things in R with functions

Functions take in objects, perform actions, and return outputs:
mean(x = my_numbers)

[1] 18

• x is the argument name,

• my_numbers is what we’re passing to the that argument

If you omit the argument name, R will assume the default order:
mean(my_numbers)

[1] 18

21 / 27

We do things in R with functions

Functions take in objects, perform actions, and return outputs:
mean(x = my_numbers)

[1] 18

• x is the argument name,

• my_numbers is what we’re passing to the that argument

If you omit the argument name, R will assume the default order:
mean(my_numbers)

[1] 18

21 / 27

We do things in R with functions

Functions take in objects, perform actions, and return outputs:
mean(x = my_numbers)

[1] 18

• x is the argument name,

• my_numbers is what we’re passing to the that argument

If you omit the argument name, R will assume the default order:
mean(my_numbers)

[1] 18

21 / 27

Getting help with R

How do we know the default argument order? Look to help files:
help(mean)
?mean # shorter

• Sometimes inscrutable, so look elsewhere:

• Google, StackOverflow, Twitter, RStudio Community.
• Ask on Ed or on class Slack.
• Come to section, office hours, study hall.

• Get help early before becoming too frustrated!

• Easy to overlook small issues like missing commas, etc.

22 / 27

Getting help with R

How do we know the default argument order? Look to help files:
help(mean)
?mean # shorter

• Sometimes inscrutable, so look elsewhere:

• Google, StackOverflow, Twitter, RStudio Community.
• Ask on Ed or on class Slack.
• Come to section, office hours, study hall.

• Get help early before becoming too frustrated!

• Easy to overlook small issues like missing commas, etc.

22 / 27

Getting help with R

How do we know the default argument order? Look to help files:
help(mean)
?mean # shorter

• Sometimes inscrutable, so look elsewhere:

• Google, StackOverflow, Twitter, RStudio Community.

• Ask on Ed or on class Slack.
• Come to section, office hours, study hall.

• Get help early before becoming too frustrated!

• Easy to overlook small issues like missing commas, etc.

22 / 27

Getting help with R

How do we know the default argument order? Look to help files:
help(mean)
?mean # shorter

• Sometimes inscrutable, so look elsewhere:

• Google, StackOverflow, Twitter, RStudio Community.
• Ask on Ed or on class Slack.

• Come to section, office hours, study hall.

• Get help early before becoming too frustrated!

• Easy to overlook small issues like missing commas, etc.

22 / 27

Getting help with R

How do we know the default argument order? Look to help files:
help(mean)
?mean # shorter

• Sometimes inscrutable, so look elsewhere:

• Google, StackOverflow, Twitter, RStudio Community.
• Ask on Ed or on class Slack.
• Come to section, office hours, study hall.

• Get help early before becoming too frustrated!

• Easy to overlook small issues like missing commas, etc.

22 / 27

Getting help with R

How do we know the default argument order? Look to help files:
help(mean)
?mean # shorter

• Sometimes inscrutable, so look elsewhere:

• Google, StackOverflow, Twitter, RStudio Community.
• Ask on Ed or on class Slack.
• Come to section, office hours, study hall.

• Get help early before becoming too frustrated!

• Easy to overlook small issues like missing commas, etc.

22 / 27

Getting help with R

How do we know the default argument order? Look to help files:
help(mean)
?mean # shorter

• Sometimes inscrutable, so look elsewhere:

• Google, StackOverflow, Twitter, RStudio Community.
• Ask on Ed or on class Slack.
• Come to section, office hours, study hall.

• Get help early before becoming too frustrated!

• Easy to overlook small issues like missing commas, etc.

22 / 27

Functions live in packages

Packages are bundles of functions written by other users that we can use.

Install packages using install.packages() to have them on your
machine:
install.packages(”ggplot2”)

Load them into your R session with library():
library(ggplot2)

Now we can use any function provided by ggplot2.

23 / 27

Functions live in packages

Packages are bundles of functions written by other users that we can use.

Install packages using install.packages() to have them on your
machine:
install.packages(”ggplot2”)

Load them into your R session with library():
library(ggplot2)

Now we can use any function provided by ggplot2.

23 / 27

Functions live in packages

Packages are bundles of functions written by other users that we can use.

Install packages using install.packages() to have them on your
machine:
install.packages(”ggplot2”)

Load them into your R session with library():
library(ggplot2)

Now we can use any function provided by ggplot2.

23 / 27

Functions live in packages

Packages are bundles of functions written by other users that we can use.

Install packages using install.packages() to have them on your
machine:
install.packages(”ggplot2”)

Load them into your R session with library():
library(ggplot2)

Now we can use any function provided by ggplot2.

23 / 27

Functions live in packages

We can also use the mypackage:: prefix to access package functions
without loading:
knitr::kable(head(mtcars))

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.62 16.5 0 1 4 4
Mazda RX4
Wag

21.0 6 160 110 3.90 2.88 17.0 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.21 19.4 1 0 3 1
Hornet
Sportabout

18.7 8 360 175 3.15 3.44 17.0 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1

24 / 27

5/ Our first visualizations

Gapminder data

library(gapminder)
gapminder

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPe~1
<fct> <fct> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
... with 1,694 more rows, and abbreviated variable
name 1: gdpPercap

25 / 27

Plotting life expectancy over time
ggplot(gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
geom_point() + geom_smooth(method = ”loess”)

40

60

80

0 30000 60000 90000
gdpPercap

lif
eE
xp

26 / 27

A histogram of GDP per capita
ggplot(gapminder, mapping = aes(x = gdpPercap)) +
geom_histogram()

0

200

400

600

0 30000 60000 90000 120000
gdpPercap

co
un
t

27 / 27

	Working in Plain Text
	Let's take a touR
	Using Rmarkdown
	Getting R bearings
	Our first visualizations

